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Abstract - In this paper, we present a study on a neural 

network operator that performs low resolution, low 

power, and high efficiency convolution operations in 

analog domains. The proposed operator is consisted of 

multiplying DAC (MDAC) with integrator structure and 

successive-approximation ADC (SAR ADC). The 

memory access frequency is lower than that of the digital 

operation because the addition operation is performed 

while the multiplication operation is performed, and the 

information is stored in the form of charge on the opamp 

output terminal. A digital-input, digital-output 

calculator consisting of MDAC and ADC was designed 

using a 65nm CMOS process. The result of transistor-

level simulation was 30.11uW of power at 33.3MHz, 

which is equivalent to 2.21TOPS/W. And it shows 

improved power efficiency than conventional digital 

convolution operator. 
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I. INTRODUCTION 

With the advent of deep learning technology, 

technological advancement of artificial intelligence has been 

spurred. In addition to demonstrating excellent performance 

in image processing, the deep learning technology is rapidly 

evolving since it has exceeded human recognition rates in 

the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2015 [1]. Most of the operations of Convolutional 

Neural Network that make up Deep Learning artificial 

intelligence take up the convolution, and GPU is used to 

massively parallelize these operations. As a by-product of 

continuous research to improve the recognition rate, the 

complexity and the computational requirement of the neural 

network are steadily increasing. For example, AlexNet [2], 

released in 2012, consisted of only eight hidden layers, but 

GoogLeNet [3] released in 2014 had 22 hidden layers and 

ResNet [4] released in 2015 had a maximum of 152 hidden 

layers. 

The composition of this paper is as follows. In Section II, 

we describe the overall architecture of an operator and the 

operation of an analog integrator-based circuit. In Section 

III, we analyze power consumption and performance 

through SPICE simulation of the operation of a composite 

multiplier designed in 65nm CMOS process. In section IV, 

we conclude the paper by summarizing the merits of the 

proposed circuit. 

 

II. OVERALL ARCHITECTURE OF CONVOLUTION ENGINE 

 

A. Circuit Structure 

Two multiplying DACs (DACs) are pipelined as shown in 

Figure 1-(a). The ADC was added to the structure that 

multiplies the data and the weight, and the operator was 

completed. An 8-bit Switched-Capacitor architecture 

suitable for low-power computer design is adopted as an 

analog operation unit, and a relatively simple and low-power 

inverter-based amplifier is used as an opamp. Inverter-based 

amplifiers have been used in low-power ADCs including 

audio ADCs [9]. Finally, the ADC is a successive-

approximation ADC (SAR ADC) with low power 

characteristics and advantageous for future process scale 

[10]. 
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Fig. 1. (a) Operation circuit with 8-bit input and output, (b) Timing 

diagram of operation circuit 
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The operation circuit operates as follows. Each time a 2-

phase non-overlap clock passes, a pair of data is multiplied 

by the weight and the information is stored in the form of a 

charge on the output of the multiply-accumulate (MAC) 

DAC. From the second operation, the multiplied data is 

added to the previous data at the MAC DAC output stage. 

As shown in Figure 1-(b), the SAR ADC operates when four 

data calculated in this manner are stored. 

Figure 2-(a) shows internal circuit of the multiplying DAC 

in Figure 1. Pseudo-differential is adopted as switched-

capacitor structure and is configured to take digital input 

value and apply voltage to amplifier output stage. As the unit 

capacitor Cu to realize 8-bit DAC operation, 748aF, the 

minimum size provided in the process, was used. The LSB 

sampling capacitors of the multiplying DACs used two Cu 

in series to reduce the size of the entire sampling capacitor 

by half. As shown in Figure 2- (b), the opamp is implemented 

as an input inverter-based circuit. The similar structure to 

digital circuits also has advantages in future process scales. 

The result of the single multiplication operation and the 

differential output VDIFF.OUT 

 

 

             𝑉𝐷𝐼𝐹𝐹.𝑂𝑈𝑇 =
𝐶𝑠𝑎𝑚𝑝𝑙𝑒

2  𝑉𝐷𝐷𝑋𝑊

𝐶𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
2            (1) 

 

 

and is formed as a differential voltage at the output 

terminal of the MAC DAC. The value of the full sampling 

capacitor Csample of the multiplying DAC is 95.7fF and the 

value of the feedback capacitor Cfeedback is 74.8fF. X and W 

represent the input data of the multiplication operation 

corresponding to -0.5 to +0.5 and the normalized value of 

the weight. 

 

B. SAR ADC 

The ADC operates after all MAC operations have been 

completed but consumes about 10% of the total power 

consumption. In addition, the ADC is unnecessary when 

designing a computer with an analog method when 

compared with a digital computer. 

On the other hand, the data of the MAC operation in the 

artificial neural network is subjected to a post-processing 

function before being processed as the input of the next 

hidden layer. ReLU, leaky ReLU, and Sigmoid are the post-

processing functions. Up to now, ReLU in Figure 3-(a) has 

been recognized as the most efficient post-processing 

function [2]. When designing the ADC with a differential 

structure, the difference in the VCM at both ends of Figure 4 

causes undesirable effects such as offset and additional 

techniques may be required to compensate for this [13]. 

However, if this phenomenon is reversed, it will produce the 

output as shown in Figure 3-(b) and implement the function 

of ReLU function without additional power consumption. 

The differential output of the ADC internal CDAC is 

 

𝐷𝐴𝐶𝑂𝑈𝑃 − 𝐷𝐴𝐶𝑂𝑈𝑇𝑁 = 2𝑉𝐶𝑀𝑃 − 2𝑉𝐶𝑀𝑁 + 𝑉𝐼𝑁𝑁 − 𝑉𝐼𝑁𝑃  (2) 

 

 

 

 
       (a)        (b) 

Fig. 3. (a) Post-processing function ReLU, (b) Implementation of ReLU 

function in ADC 

 

 
 

Fig. 4. Back-end successive-approximation ADC (SAR ADC) 

 

If VCMP is increased by the same voltage and VCMN is 

decreased, the nonlinear section of the CDAC output value 

is increased in proportion to the difference. Figure 3-(b) 

shows the SPICE simulation of the characteristics of the 

entire computer when VCMP = 712mV, VCMN = 332mV, and 

VCM = 522mV. When the analog output of the calculator is 

negative, it is converted to a specific DC value. It can be 

confirmed that it is digitally converted. In order to achieve 

this, the ADC adopts the asynchronous bottom plate 

sampling SAR ADC [14] which can provide offset by VCM 

voltage adjustment. 

 

Fig. 2. (a) Multiplying DAC internal structure, (b) Inverter based 

amplifier circuit 
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TABLE I. 
Performance comparison table 

 This 

work 
[6] [16] [5] 

Stratix10 

FPGA 

Process (nm) 65 28 65 65 14 

Operation method Analog Analog Analog Digital Digital 

resolution (bit) 8 8 Input:7 

Filter:1 
16 8 

Speed (Hz) 33.3 M 19.2 M 364 M 250 M 920 M 

Supply voltage (V) 1.2 1.0 1.2 1.17 
 

Power (W) 30.11 u 7.74 u 380.7 u 278 m 
 

Efficiency (OPS/W) 2.21 T 9.61 T 28.1 T 302 G 400 G 

Area (um
2
) 0.092

*
 0.012

*
 0.067

*
 16

*
 

 

Efficiency = (
Power

Speed
) ∗ (# 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in one period) 

* Direct comparison is difficult because the number of arithmetic core is different. 
 

 
Fig. 5. Layout using 65nm CMOS process 
 

III. SIMULATION RESULT 

 

 In this paper, we verified the actual operation and 

performance through SPICE simulation. Power consumption 

was calculated by transistor-level PEX simulation. The 

calculator was designed using a 65nm CMOS process and 

the layout is shown in Figure 5. The area of the computing 

core is 0.092 μm2. 

Figure 5 shows the result of 2304 operations on all input 

data and some filter data from -127 to +127, and the result 

of operation error extracted from the largest output. In the 

simulation in Figure 6, only the multiplication operation was 

performed to collect data. 

In some computation results and errors, there is an 

inverted staircase-type error every time the LSB is changed. 

In order to reduce the power consumption and the load 

impedance of the amplifier in the design, two LSB unit 

capacitors are connected in series. The final computation 

error in the computation result of Figure 6 is limited to the 

2LSB range. This error does not affect the final recognition 

rate in artificial neural network computation. It is possible to 

confirm the recognition rate of 98.0% when 10,000 MNIST 

images were recognized even in case of 5LSB operation 

error in the previous study [6]. Figure 8 shows 

 
Fig. 6. Operation result and LSB-based error 

 

 
Fig. 7. Accumulation results in worst case 

 

 
Fig. 8. Hidden layer data distribution diagram of VGG-F artificial neural 

network 
 

the distribution of the hidden layer coefficient data of VGG-

F [15], which is the simplest of the artificial neural networks, 

VGGNet. Figure 7 shows that in the worst case, the result of 

multiplication and addition of the operation result is 

accumulated 16 times, which is about 4 LSB errors. Since 

the hidden layer coefficient data of the actual artificial neural 

network is distributed similar to the normal distribution as 

shown in Figure 8, the operation in the worst case does not 

occur frequently. 

Table I summarizes the performance comparison between 

transistor-level PEX simulation results and conventional 

digital and analog operators. The proposed algorithm is 

slower than the digital processor Stratix10 FPGA but has 

computation efficiency as high as 5 times. In addition, since 

the conventional analog calculator [6] uses a relatively new 
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process, the power efficiency is low, but it has faster 

computation speed. [16] has higher speed and efficiency than 

the arithmetic unit proposed in this paper. However, since the 

hidden layer data is stored in the SRAM as binary data, the 

applicable range is limited to a relatively simple data set such 

as MNIST have. The proposed algorithm can be applied to 

relatively complicated data sets such as CIFAR-10 because 

8-bit operation is possible. 

 

IV. CONCLUSIONS 

  

In this paper, artificial neural network modeling human 

brain maintains reliable inference accuracy even at low 

resolution [7] and computation at low resolution is based on 

previous research results that analogue method is more 

efficient than digital method [8] A low - resolution high - 

efficiency artificial neural network computing circuit was 

designed. The proposed arithmetic unit improves the 

computation speed more than the conventional analog 

arithmetic unit [6]. Also, it has the advantage of no additional 

energy consumption in addition operation in MAC 

operation, and saves energy used for memory access 

compared to digital type arithmetic operators [5]. 

We designed a digital-input, digital-output artificial neural 

network 8-bit arithmetic circuit with a layout in 65nm 

CMOS process, a computation speed of 33.3MHz and a 

computation efficiency of 2.21TOPS/W. 
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