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Abstract - MIM capacitor test sample has been designed for 

modeling of the MIM capacitor on silicon interposer or chip. 

Equivalent circuit model of MIM capacitor is proposed, and the 

circuit model is verified using vector network analyzer (VNA) 

measurement. With the extracted parasitic components such as 

MIM capacitor capacitance, coupling parasitic capacitance and 

coupling parasitic parallel resistance, the self-impedance of the 

equivalent circuit model can be obtained. This circuit model is 

able to be applied for in chip or silicon interposer PDN. Also, 

the proposed model can be used to evaluate impedance of the 

chip accurately. 

 

Keywords—MIM Capacitor, Silicon Interposer, Power 

Distribution Network 

 

 
I. INTRODUCTION 

 

Silicon interposer technology is applied in various 

systems to overcome the physical limitations of the 

conventional two-dimensional systems in package (2D-SiP) 

through vertical interconnection and by shortening the 

interconnection length between different chips. As shown in 

Fig. 1, using the silicon interposer technology can increase 

the number of input/output pads to achieve high data 

bandwidth. Also, the power integrity is secured using the 

silicon interposer technology by increasing the number of 

power/ground balls. 

The electrical advantages of the silicon interposer 

technology is the relatively low RC delay and low 

input/output power consumption due to relatively low 

interconnection capacitance.  However, the low 

interconnection capacitance may cause undesired effects 

such as cross talk, reflection due to low impedance and high 

frequency loss leading to intersymbol interference (ISI) and 

eye-diagram distortion. Furthermore, the high frequency 

components from the harmonic generation are coupled to 

neighboring interconnections and active circuits and may 

result in unwanted effects which may lead to a system 

failure. Hence, the paracitic characteristics of the power 

distribution network (PDN) and passive components on the 

silicon interposer must be carefully modeled before deigning 

a silicon interposer [1]-[3]. 

By fabricating the metal-insulator-metal (MIM) 

capacitors, which can be used to lower the PDN impedance 

in a silicon interposer, we demonstrated the parasitic high 

frequency characteristics. We proposed and verified an 

equivalent circuit model for the MIM capacitor, which can 

be used up to 20 GHz. 

 

 
II. EXPERIMENTS 

 

Conventionally, the embedded capacitors are modeled 

assuming the structure shown in Fig. 2. Ideally, the voltage 

across the two plates, V, is given as: 
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Fig. 2. A simplified illustration of an ideal capacitor. 

Fig. 1. An illustration of possible silicon interposer for HBM. Silicon 

interposer is composed of passive components such as embedded capacitor 

and discrete capacitors. 
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where E is the electric field between the two plates, A is 

the Area of the conductive metal plate, 𝜌  is the charge 

density and, 𝜀  is the dielectric constant of the dielectric 

material and Q is the total charge between the two plates. 

Since the capacitance, C, is defined as: 

 

C =
Q

𝑉
 

  

Therefore, capacitance can be rearranged as: 

 

C =
𝜀𝐴

𝑑
 

 

Therefore, metal-insulator-metal capacitance can be 

extracted. Ideally, the MIM capacitor can be modeled with 

the single capacitance value at all frequency. However, due 

to parasitic components, the self-impedance shows change 

in slope at different frequency. To model the parasitic 

components as an equivalent circuit model, one of the MIM 

capacitors from the fabricated sample shown in Fig. 3 is 

selected. 1 pF capacitor is selected for modeling. 

The dimension of the 1pF MIM capacitor is shown in Fig. 

4. The width and the length of the metal above the dielectric 

material, silicon nitride. Using the capacitance formula, 1 pF 

capacitance can be calculated. 

 
III. RESULTS AND DISCUSSIONS 

 

Using a vector network analyzer (VNA), the s-parameter 

of the test sample was measured. The obtained s-parameter 

is converted to self-impedance of the MIM capacitor. The 

measured self-impedance of the MIM capacitor is shown in 

Fig. 5. Constant capacitance should result in linear decrease 

in log scale graph of frequency vs. self-impedance. Due to 

parasitic components of the MIM capacitor, self-impedance 

slope at frequency regions below 100 MHz and above 1 GHz 

changes. Therefore, to accurately evaluate the impact of 

MIM capacitor on the chip-level or interposer power 

distribution network, an equivalent circuit must be proposed. 

Therefore, we proposed an equivalent circuit model for 

the MIM capacitor which can be used for wide frequency 

range from 30 kHz to 20 GHz. The proposed equivalent 

circuit model is given in table I. CMIMCAP refers to the MIM 

capacitor capacitance, which is 1 pF. Ccoupling refers to the 

coupling parasitic capacitance, and Gcoupling refers to the 

coupling parasitic parallel resistance. Ccoupling and Gcoupling 

result from metal trace and other interconnecting parasitic 

components for the MIM capacitor sample. GMIMCAP refers 

to the parallel resistance between two contact pad metals 

through silicon substrate. Using the measurement results the 

three parasitic component values are extracted by fitting the 

equivalent circuit to the measurement result. Ccoupling value is 

700 fF, Gcouplin value is 8.33 mS and GMIMCAP value is 30.3 

μS. GMIMCAP results from the bulk silicon resistance between 

the two contact pad metals which goes through the bulk 

silicon substrate. Higher doping concentration of silicon or 

increase in size of the contact pad will decrease the 

resistance between the two pads. The equivalent circuit 

component values are given in Table I. 

Below 100 MHz, the self impedance changes abruptly in 

Fig. 5. Such abrupt change results from the VNA 

measurement with low number of linear frequency steps. If 

the measurement were to be done with log scale with more 

Fig. 3. Fabricated chip design 

Fig. 5. Measured self-Impedance of the 1 pF MIM capacitor sample. 

Fig. 4. Simplified schematic of the fabricated MIM capacitor. 
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frequency measurement points, such abrupt change in slope 

will not be observed. 

With the extracted parasitic components and calculated 

MIM capacitor capacitance value, the self-impedance of the 

equivalent circuit model can be obtained. The equivalent 

circuit model is verified with the measurement results as 

shown in Fig. 6. 

 

 
IV. CONCLUSION 

 

In this paper, we have proposed an equivalent circuit 

model of the MIM capacitor which can be used in chip or 

silicon interposer PDN. Our model can be used to evaluate 

accurate impedance of the chip or silicon interposer PDN 

impedance analysis. 
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Fig. 6. Equivalent circuit verification using the measurement results. 

TABLE I. MIM Capacitor Equivalent Circuit Model Components 

Equivalent Circuit Model Component Parameter 

CMIMCAP 1.0 pF 

Ccoupling
* 700 fF 

Gcoupling
* 8.33 mS 

GMIMCAP 30.3 μS 
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