
IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

Abstract – This paper describes a hardware implementation
of the lightweight block cipher algorithm LEA. The LEA
crypto-processor designed in this paper supports three key
lengths of 128, 192, and 256 bits. To achieve area-efficient and
low-power implementation, both round block and key
scheduler are optimized to share hardware resources used for
encryption and decryption as well as for key scheduling. In
addition, a parallel register structure with a novel key
scheduling scheme is devised to reduce clock cycles for key
scheduling, which results in an increase of performance by
20~30%. The LEA crypto-processor implemented with 21,000
gates was fabricated with a 0.18-um CMOS process. Test
results show that all of the 22 chips tested functions correctly,
resulting in 100% yield.

I. INTRODUCTION

The IoT technology enables various devices to be

connected to internet, and to share information with each
other without the intervention of human beings. It has been
widely applied to various fields such as smart home, smart
security, intelligent transportation information systems, and
etc. Because the IoT system processes data in various types
through complex and heterogeneous networks, it can be
exposed to the risks of information security including
information spill, fabrication, and falsification. The IoT has
security-related issues similar to sensor network and
Internet. The IoT security-related issues include privacy,
access control, authentication, data storage, and
management [1, 2].

A representative technology used for information security
is cryptography. The cryptography is a word of Greek
origin. It means not only secret writing but also technology
that transforms information to be safe from various types of
security attacks. The cryptography is used as a mean to
protect information from security attacks, such as cases
when someone tries to intercept information stored in
computer or transferred via networks, to expose its contents,
or to fabricate it intentionally. Security is considered as one
of the core technologies for IoT system.

For the security of IoT system, both symmetric key

cryptography and public key cryptography can be used.
Since most of the IoT networks and devices including sensor
network, RFID tag, smart card have limited hardware and
software resources, the cryptographic algorithms that
consume low-power and small hardware/software resource
are required [3]. Recently, various lightweight block cipher
algorithms for IoT security have been proposed, including
HIGHT (HIGh security and lightweigHT) [4], LEA
(Lightweight Encryption Algorithm) [5], CLEFIA [6],
PRESENT [7], mCrypton [8], and TEA (Tiny Encryption
Algorithm) [9]. The cryptographic algorithm can be
implemented either in software or in hardware. The
dedicated hardware implementation is used for those
systems where physical safety and low-power consumption
are important. Recently, some cases of low-power and
small-area hardware implementation for the security of IoT,
smart card, and NFC have been announced [10, 11].

In this paper, we designed a LEA crypto-processor for IoT
applications, which supports three key lengths of 128, 192,
256 bits. The LEA crypto-processor was verified by FPGA
implementation, and was fabricated as a test chip. After the
LEA block cipher algorithm will be briefly explained in
section II, the design of the LEA crypto-processor will be
discussed in section III. Some functional verification and
hardware implementation results are described in section IV,
and conclusion will be followed in section V.

II. LIGHTWEIGHT BLOCK CIPHER ALGORITHM LEA [5]

The LEA is a symmetric key block cipher developed by

NSRI (National Security Research Institute), which has a
block size of 128 bits. The algorithmic structure of the LEA
is similar to Feistel structure, and round function is based on
ARX (Addition, Rotation, and XOR) operations. It is known
that the ARX operations of 32 bits in round function make it
suitable for software platform. Since the LEA does not use
nonlinear substitution tables (S-box), it is also well suited to
hardware implementation.

Encryption and decryption processes of the LEA are
depicted in Figure 1, which consist of round key scheduling
and round functions. The encryption (or decryption) is
carried out by consecutive operations of 24/28/32 rounds
depending on the key length of 128/192/256 bits. Round
keys of 192 bits to be used in round transformation are
expanded from master key of 128/192/256 bits.

a. Corresponding author; kwshin@kumoh.ac.kr

Copyright ©2016 IDEC All rights reserved.
This is an Open-Access article distributed under the terms of the Creative Commo
ns Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/
3.0) which permits unrestricted non-commercial use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Implementation of Lightweight Encryption Algorithm LEA

Mi-Ji Sung1, Gi-Chur Bae, Kyung-Wook Shina
School of Electronic Engineering, Kumoh National Institute of Technology

E-mail : smj920307@kumoh.ac.kr1

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

Fig. 1. Block cipher LEA

Decryption is the reverse process of encryption, which

requires reversed key scheduling and inverse round
functions. Modulo additions are used in encryption process,
but modulo subtractions are used in decryption. The rotation
operations for encryption and decryption are carried out in
opposite directions.

A pseudo code for encryption process is shown in figure
2(a). Encryption process consists of key scheduling and
encryption function. The encryption key scheduling
௜݈݁ݑ݄݀ܿݏݕ݁ܭ

௘௡௖ generates round keys ܴܭ௜
௘௡௖ ሺ0 ൑ ݅ ൑

ݎܰ െ 1ሻ of 192 bits for ܰݎ encryption rounds. The
encryption function ݐ݌ݕݎܿ݊ܧ transforms a plaintext ܲ of
128 bits to a ciphertext ܥ of 128 bits using round keys
௜ܭܴ

௘௡௖ and round function ܴ݀݊ݑ݋௘௡௖. Figure 2(b) shows a
pseudo code for decryption process. Decryption process
consists of key scheduling and decryption function. The
decryption key scheduling ݈݁ݑ݄݀ܿݏݕ݁ܭ௜

ௗ௘௖ generates
round keys ܴܭ௜

ௗ௘௖ ሺ0 ൑ ݅ ൑ ݎܰ െ 1ሻ of 192 bits for ܰݎ
decryption rounds. The decryption function ݐ݌ݕݎܿ݁ܦ is the
inverse function of ݐ݌ݕݎܿ݊ܧ, which transforms a ciphertext
ܥ to a plaintext ܲ using round keys ܴܭ௜

ௗ௘௖ and round
function ܴ݀݊ݑ݋ௗ௘௖.

(a)

(b)

Fig. 2. Pseudo code for encryption and decryption of LEA (a) Encryption
(b) Decryption

The i-th ሺ0 ൑ ݅ ൑ ݎܰ െ 1ሻ round for encryption has
operations as shown in figure 3(a). The state value ௜ܺାଵ ൌ
ሺ ௜ܺାଵሾ0ሿ, ௜ܺାଵሾ1ሿ, ௜ܺାଵሾ2ሿ, ௜ܺାଵሾ3ሿሻ is obtained by XOR
operation of state value ௜ܺ ൌ ሺ ௜ܺሾ0ሿ, ௜ܺሾ1ሿ, ௜ܺሾ2ሿ, ௜ܺሾ3ሿሻ
with round key ܴܭ௜

௘௡௖ ൌ 	 ሺܴܭ௜
௘௡௖ሾ0ሿ, ௜ܭܴ

௘௡௖ሾ1ሿ, ௜ܭܴ
௘௡௖ሾ2ሿ,

௜ܭܴ
௘௡௖ሾ3ሿ, ௜ܭܴ

௘௡௖ሾ4ሿ, 	 ௜ܭܴ
௘௡௖ሾ5ሿሻ , modulo addition in 32

bits, bit rotation (ܴܱܮଽ, ܴܱܴହ, ܴܱܴଷሻ, and rotation in 32
bits. On the other hand, the i-th round for decryption process
has operations as depicted in figure 3(b). The state values
௜ܺାଵ ൌ (௜ܺାଵሾ0ሿ, ௜ܺାଵሾ1ሿ, ௜ܺାଵሾ2ሿ, ௜ܺାଵሾ3ሿሻ is obtained by

XOR operation of state value ௜ܺ ൌ ሺ ௜ܺሾ0ሿ,
	 ௜ܺሾ1ሿ, ௜ܺሾ2ሿ, ௜ܺሾ3ሿሻ with round key
௜ܭܴ

ௗ௘௖ሺܴܭ௜
ௗ௘௖ሾ0ሿ, ௜ܭܴ

ௗ௘௖ሾ1ሿ, ௜ܭܴ
ௗ௘௖ሾ2ሿ, ௜ܭܴ

ௗ௘௖ሾ3ሿ, ௜ܭܴ
ௗ௘௖ሾ4ሿ,

௜ܭܴ
ௗ௘௖ሾ5ሿሻ , modulo subtraction in 32 bits, bit rotation

(ܴܱܴଽ, ,ହܮܱܴ ଷሻܮܱܴ and rotation in 32 bits. The key
scheduling consists of AR (Addition, Rotation) operations
and constant value generation that generates constant values
for modulo operation. The number of constants generated
depends on master key length. The AR operation is applied
in opposite order depending on encryption or decryption.

(a)

(b)

Fig. 3. Round functions for LEA encryption and decryption (a) Encryption
(b) Decryption

Figure 4 shows pseudo code for the key scheduling of

encryption process. The encryption key scheduling
generates round keys of 192 bits ܴܭ௜

௘௡௖ . It performs

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

modulo addition of master key with constant value in 32
bits, and bit rotation. The round keys for decryption process
are generated in the same way as that of encryption except
for the relationship of ܴܭ௜

ௗ௘௖ ൌ 	 ே௥ି௜ିଵܭܴ
௘௡௖ .

(a) LEA-128

(b) LEA-192

(c) LEA-256

Fig. 4. Pseudo code for LEA encryption key schedule (a) LEA-128 (b)
LEA-192 (c) LEA-256

III. DESIGN OF LEA CRYPTO-PROCESSOR[12]

A crypto-processor for LEA is designed, which supports

three key lengths of 128/192/256 bits. The LEA processor
consists of round block, key scheduler, and control block as
shown in figure 5. The round block performs round
transformations of 24/28/32 rounds depending on the key
length of 128/192/256 bits. The key scheduler generates
round keys of 192 bits that are used in round operation. The
round block was designed with 32-bit data-path, so one
round operation takes four clock cycles. To achieve
area-efficient implementation, some design considerations
were taken into account for sharing hardware resources of
the key scheduler supporting three key lengths, as well as
the round block performing encryption and decryption
operations.

Fig. 5. LEA encryption/decryption processor

A. Round Block

The round block receives a plaintext (or ciphertext) of
128 bits and a round key of 192 bits generated by key
scheduler, and performs round transformations. Figure 6
shows the round block that consists of four 32-bit
registersሺܺ0~ܺ3ሻ, XORs, modulo adders/subtractors in 32
bits, rotators and multiplexors. The round block was
designed to share hardware resources including registers,
XORs and modulo adder/subtrator for encryption and
decryption in order to achieve area-efficient implementation.

The plaintext (or ciphertext) of 128 bits enters into the
round block in 32 bits at a time, taking four clock cycles.
The data entered in register ܺ0	 moves to the next register
in the order of ܺ0 → ܺ1 → ܺ2 → ܺ3 . After completing
plaintext (or ciphertext) input, round operation begins. Each
round operation requires 3/3/4 clock cycles depending on
the key length of 128/192/256 bits. The ciphertext (or
plaintext) is obtained after repeating 24/28/32 round
operations.

Fig. 6. Round block diagram

a) Round operation for encryption

The round operation for encryption includes round key
additions (XOR operations) of rk0 with ܺ2, and rk1 with
ܺ3, where rk0 and rk1 are round keys generated by key
scheduler. These two results of XOR operations are added in

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

modulo 32, then the result is rotated depending on the order
of clock cycles as following; at the first clock cycle, it is
rotated to the right by 3 bitsሺܴܱܴ3ሻ. At the second clock
cycle, it is rotated to the right by 5 bitsሺܴܱܴ5ሻ. At the third
clock cycle, it is rotated to the left 9 bitsሺܴܱ9ܮሻ. The rotated
result is saved in the register ܺ0. At the same time, data
stored in the registers are shifted to the right in 32 bits. After
shifts of ܺ0 → ܺ1 → ܺ2 → ܺ3 are repeated for three clock
cycles, one round operation is completed. As a result of
these operations, data stored in registers ܺ0, ܺ1, ܺ2, ܺ3 are
paired by (ܺ2, ܺ3), ሺܺ1, ܺ2ሻ, (ܺ0, ܺ1ሻ to be used in the
operation of next cycle.

b) Round operation for decryption

In decryption, round keys are used in reverse order of
encryption. In addition, the order of operations in round
function for decryption is ′ܴ݊݋݅ݐܽݐ݋ → ݊݋݅ݐܿܽݎݐܾݑܵ →
ܱܴܺ′, whereas that of the encryption process is ′ܱܴܺ →
݊݋݅ݐ݅݀݀ܣ → ′݊݋݅ݐܽݐ݋ܴ . The direction of rotation for
decryption is opposite to the encryption, and modulo
addition is replaced by modulo subtraction. Moreover, the
data stored in registers moves to the opposite direction,
ܺ3 → ܺ2 → ܺ1 → ܺ0. Similar to the encryption, a round
operation takes three clock cycles, and the data in register
ܺ0 is rotated depending on the order of clock cycles as
follows; at the first clock, data is rotated to the right by 9
bitsሺܴܱܴ9ሻ, then it is rotated to the left by 5 bitsሺܴܱ5ܮሻ at
the second clock, finally it is rotated to the left by 3
bitsሺܴܱ3ܮሻ at the third clock cycle.

B. Key Scheduler Block

The round keys of 192 bits used in the round operations
are generated by key scheduling algorithm. Figure 7 shows
the key scheduler proposed in this paper, which consists of
eight registers of 32 bits; XOR operators, 32-bit modulo
adders/subtractors, rotators. As shown in figure 7, the key
scheduler has eight 32-bit registers ሺܶ0~ܶ7ሻ . They are
separated into two groups working in parallel, the registers
with even index ሺܶ0, ܶ2, ܶ4, ܶ6ሻ and the registers with odd
index ሺܶ1, ܶ3, ܶ5, ܶ7ሻ.

Fig. 7. Proposed key scheduler

The key scheduler also includes a constant generator for
constant value δ to be used in key expansion. Depending
on the key length of 128/192/256 bits and
encryption/decryption modes, the key scheduler operates in
different ways. Some multiplexers are controlled by signal
k_mode that determines one of key scheduling of LEA-128,
LEA-192, or LEA-256 depending on key length.
The key scheduler was designed to share hardware resources
for encryption and decryption, as well as for key length in
order to minimize hardware.
The master key enters into the register ܶ0 and ܶ1
alternately in 32 bits at a time. The data in registers shift as
follows; ܶ0 → ܶ2 → ܶ4 → ܶ6 and ܶ1 → ܶ3 → ܶ5 → ܶ7 .
The key scheduling of LEA-128 (i.e., key length is 128-bit)
requires four 32-bit registers, and it takes four clock cycles
per round. We devised an efficient scheme to reduce one
clock cycle to generate round key. The idea is based on the
register arrangement in the key scheduler.

(a)

(b)

(c)

(d)

Fig. 8. Timing relations of key scheduling and round transformation (a) key
scheduling of LEA-128 in [13] (b) proposed key scheduling of LEA-128 (c)
key scheduling of LEA-256 in [13] (d) proposed key scheduling of
LEA-256

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

Since the key scheduler in our design has six 32-bit
registers, the intermediate keys generated previously round
can be saved in unused parts of the registers, and they can be
outputted by using multiplexer. This key scheduling requires
three clock cycles per round rather than four clock cycles
per round in [13], resulting in the clock cycle reduction.

The similar idea was applied to the key scheduling of
LEA-256 (i.e., key length is 256-bit). It requires four clock
cycles per round to generate round key. Three clock cycles
are used for key scheduling and one clock cycle is used for
shift & save operation.

Figure 9 shows a comparison of timing relationships for
round transformation and key scheduling between our
design and the design of [13]. In the LEA-128 mode shown
in Figure 9-(a) and (b), our design requires three clock
cycles per round as compared to four clock cycles per round
in [13]. Consequently, the performance is improved by 20%
in encryption mode and 23% in decryption mode. In the case
of LEA-256 mode shown in Figure 9-(c) and (d), our design
requires four clock cycles per round as compared to six
clock cycles per round in [13]. Consequently, the
performance is improved by 33% and 32% in encryption
mode and decryption mode, respectively.

IV. FUNCTIONAL VERIFICATION AND CHIP TEST RESULTS

The LEA crypto-processor was designed in Verilog HDL,

and was verified by FPGA implementation. Figure 9-(a)
shows the FPGA verification set-up that consists of FPGA
board, UART interface, and GUI software. The Xilinx
Virtex5 XC5VSX-50T FPGA device is used. Master key and
plaintext (or ciphertext) are sent from PC to FPGA through
RS232C, and test results of ciphertext (or plaintext) are sent
from FPGA to PC. Figure 9-(b) shows the FPGA
verification results. The left Lena image is the original data
used as test vector. The center part shows the cipher-image
obtained from the encryption of the original Lena image.
The right part shows the decryption result of the
cipher-image. The original Lena image was restored from
the decryption of cipher-image. The FPGA verification
results confirm that the LEA crypto-processor functions
correctly.

(a)

(b)

Fig. 9. FPGA verification results of LEA crypto-processor (a) FPGA
verification set-up (b) FPGA verification results

Figure 10 shows the design flow of the LEA processor

which was fabricated in a 0.18-um CMOS process. The LEA
processor modeled in Verilog HDL was verified by
functional simulation using Modelsim, and then it was
synthesized to gate-level by using a 0.18um standard cell
library. Formality check was carried out between RTL
modeling and the netlist extracted from synthesis. For the
sign-off of front-end design, the pre-layout STA (static
timing analysis) using PrimeTime and pre-layout timing
simulation using VCS were carried out. The layout of the
chip was designed by auto P&R (place & route) using Astro,
and then equivalence between gate-level netlist and layout
was verified by formality check. In addition, post-layout
STA and timing simulation were performed with the
back-annotation of the parasitic RC effects extracted from

Fig. 10. Design flow of the LEA crypto-processor

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

the layout using Star-RCXT. Finally, layout verification was
done by DRC (design rule check) and LVS (layout versus
schematic) using Calibre. Figure 11 shows the chip layout.
The maximum clock frequency estimated by STA is 179
MHz. At the maximum frequency, the estimated throughputs
are about 286.4/257.4/173.6 Mbps for encryption, and about
297.6/ 257.4/172.3 Mbps for decryption depending on the
key length of 128/192/256 bits.

Fig. 11. Layout of LEA crypto-processor

Figure 12 shows the test set-up, which consists of test

board and GUI software on PC. The test board contains a
socket where a test chip is mounted, a FPGA device of
Xilinx Spartan3 XC3S1000, and some switches. In order to
send test vectors from PC to the test board, and to receive
test responses from the test board, UART and wrapper
circuits are implemented in the FPGA device on the test
board.

Fig. 12. MPW chip test result of LEA core

GUI software on PC displays the test vectors and test

responses. Figure 12 shows that the test results of the LEA
crypto-processor. Test vector (Lena image) are sent to the
wrapper implemented in the FPGA, then are moved into the
test chip (LEA crypto-processor). The test chip encrypts the
test vectors, and sends cipher-image to the wrapper. Then
the cipher-image stored in the wrapper is sent back to PC via
UART. As can be seen in the center part of the display, the
Lena image was converted into random values by
encryption. The right part of the display shows the
decryption result of the cipher-image. The original Lena
image was reconstructed by decryption. The test results
show that the LEA crypto-processor functions correctly. All
of the 22 chips tested works correctly, resulting 100% yield.

Table I compares our design with the LEA processor of
[13]. The LEA crypto-processor designed in this paper
supports three key lengths, but the LEA processor of [13]
supports only one key length of 128 bits. Therefore, direct
comparison of hardware complexity is unfair. The estimated
throughput of our LEA processor is about 99~177 Mbps
when operating with 100 MHz clock, which means about 30
percent higher than that of the LEA processor of [13].

V. CONCLUSIONS

A LEA crypto-processor design supporting three key

lengths of 128/192/256 bits is discussed. Some design
optimizations were considered to achieve area-efficient
implementation, which share hardware resources for
encryption and decryption, as well as key expansion for
three key lengths. In addition, a new key scheduling scheme
was devised to reduce the number of clock cycles required
per round, which results in performance increase by
20~30%.

TABLE I.

Comparison of LEA cores

The LEA crypto-processor was fabricated in a 0.18-um

CMOS process. The chip test results show that the
encryption and decryption for the key length of 128/192/256
bits work correctly. The throughputs, estimated from
simulation for a clock frequency of 179 MHz, are about
286.4/257.4/173.6 Mbps for encryption and about
297.6/257.4/172.3 Mbps for decryption depending on the
key length. The LEA crypto-processor can be used as an IP
in security IC for IoT and mobile devices that require low
power and small-area.

ACKNOWLEDGMENT

This work was supported by the Industrial Core

Techno-logy Development Program (10049009,
Development of Main IPs for IoT and Image Based Security
Low-Power SoC) funded by the Ministry of Trade, Industry
& Energy.

The authors are thankful to IDEC for supporting EDA
software.

IDEC Journal of Integrated Circuits and Systems, VOL 02, No.2, July 2016 http://www.idec.or.kr

REFERENCES

[1] Dong-hui Kim et al, "Security for IoT Service", Journal
of Korea Institute of Communication and Information
Services, vol. 30, no. 8, pp.53, July 2013.

[2] C. Lu, "Overview of Security and Privacy Issues in the
Internet of Things", http://www.cse.wustl.edu/~jain/
cse57414/ftp/security/

[3] T. Eisenbarth, C. Paar, A. Poschmann, S. Kumar and L.
Uhsadel, "A Survey of Lightweight Cryptography
Implementations, " IEEE Design & Test of Computers,
vol.24, no. 6, pp. 522-533, 2007.

[4] Korea Internet & Security Agency, "HIGHT Algorithm
Specification", 2009.

[5] Telecommunications Technology Association, "128-Bit
Block Cipher LEA", TTA Standard,
TTAK.KO-12.0223, 2013.

[6] T. Akishita and H. Hiwatari, "Very Compact Hardware
Implementations of the Block Cipher CLEFIA", in
Selected Areas in Cryptography—SAC 2011, ser.
LNCS, vol. 7118, pp. 278-292, Springer-Verlag, 2012.

[7] A. Bogdanov et al., "PRESENT: An Ultra-Lightweight
Block Cipher", Proc. Workshop Cryptographic
Hardware and Embedded Systems (CHES 07), LNCS
4727, Springer, pp. 450-466, 2007.

[8] C.H. Lim and T. Korkishko, "mCrypton - A
Lightweight Block Cipher for Security of Low-Cost
RFID Tags and Sensors," Proc. of Information Security
Applications, LNCS, vol. 3786, Aug. 2005, pp.
243-258.

[9] D. Wheeler and R. Needham, "TEA, a Tiny Encryption
Algorithm", Proc. of the Second International
Workshop on Fast Software Encryption, pp. 97-110,
1995.

[10] N. Hanley and M. O’Neill, "Hardware Comparison of
the ISO/IEC 29192-2 Block Ciphers", 2012 IEEE
Computer Society Annual Symposium on VLSI, pp.
57-66, 2012.

[11] S.S.M. AlDabbagh and I.A. Shaikhli, "Lightweight
Block Cipher: a Comparative Study", Journal of
Advanced Computer Science and Technology Research
Vol.2 No.4, pp. 159-165, Nov., 2012.

[12] Miji Sung and Kyungwook Shin, "An Efficient
Hardware Implementation of Lightweight Block Cipher
LEA-128/192/256 for IoT Security Applications",
Journal of Korea Institute of Information and Commu
nication Engineering, vol. 19, No. 7, pp.1608-1616,
2015.

[13] Donggeon Lee et al, "Efficient Hardware
Imple-mentation of the Lightweight Block Encryption
Algorithm LEA", Sensors, pp. 982-983, 2014.

Mi-Ji Sung received the B.S.
degree in electronic engineering from
Kumoh National Institute of
Technology, Gumi, Korea, in 2015
and is currently working toward the
M.S. degree.

Her main interests are
semiconductor IP design for
communications and signal process,
semiconductor IP design for

information security.

Gi-Chur Bae received the B.S.
degree in electronic engineering from
Kumoh National Institute of
Technology, Gumi, Korea, in 2015
and is currently working toward the
M.S. degree.

His main interests are
semiconductor IP design for
communications and signal process,
semiconductor IP design for

information security.

Kyung-Wook Shin received the
B.S. degree in electronic engineering
from Korea Aerospace University,
Goyang, Korea, 1984. He received
the M.S. degree and the Ph.D.
degree, both in electronic
engineering, from Yonsei University,
Seoul, Korea, in 1990 and 1990.
From 1990 to 1991, He worked at
Electronics and Telecommunications

Research Institute (ETRI). He is currently a professor of
school of electronic engineering at Kumoh National Institute
of Technology since 1991. He spent a sabbatical year as
visiting professor at University of Illinois at
Urbana-Champaign during 1995-1996, and at University of
California at San Diego during 2003-2004 and at Georgia
Institute of Technology during 2013-2014.

His research interests are SoC design for communications
and signal processing, SoC design for information security,
and semiconductor IP design.

