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Abstract – This paper describes a hardware implementation 
of the lightweight block cipher algorithm LEA. The LEA 
crypto-processor designed in this paper supports three key 
lengths of 128, 192, and 256 bits. To achieve area-efficient and 
low-power implementation, both round block and key 
scheduler are optimized to share hardware resources used for 
encryption and decryption as well as for key scheduling. In 
addition, a parallel register structure with a novel key 
scheduling scheme is devised to reduce clock cycles for key 
scheduling, which results in an increase of performance by 
20~30%. The LEA crypto-processor implemented with 21,000 
gates was fabricated with a 0.18-um CMOS process. Test 
results show that all of the 22 chips tested functions correctly, 
resulting in 100% yield. 

 
 

I. INTRODUCTION 

 
The IoT technology enables various devices to be 

connected to internet, and to share information with each 
other without the intervention of human beings. It has been 
widely applied to various fields such as smart home, smart 
security, intelligent transportation information systems, and 
etc. Because the IoT system processes data in various types 
through complex and heterogeneous networks, it can be 
exposed to the risks of information security including 
information spill, fabrication, and falsification. The IoT has 
security-related issues similar to sensor network and 
Internet. The IoT security-related issues include privacy, 
access control, authentication, data storage, and 
management [1, 2]. 

A representative technology used for information security 
is cryptography. The cryptography is a word of Greek 
origin. It means not only secret writing but also technology 
that transforms information to be safe from various types of 
security attacks. The cryptography is used as a mean to 
protect information from security attacks, such as cases 
when someone tries to intercept information stored in 
computer or transferred via networks, to expose its contents, 
or to fabricate it intentionally. Security is considered as one 
of the core technologies for IoT system. 

For the security of IoT system, both symmetric key 

cryptography and public key cryptography can be used. 
Since most of the IoT networks and devices including sensor 
network, RFID tag, smart card have limited hardware and 
software resources, the cryptographic algorithms that 
consume low-power and small hardware/software resource 
are required [3]. Recently, various lightweight block cipher 
algorithms for IoT security have been proposed, including 
HIGHT (HIGh security and lightweigHT) [4], LEA 
(Lightweight Encryption Algorithm) [5], CLEFIA [6], 
PRESENT [7], mCrypton [8], and TEA (Tiny Encryption 
Algorithm) [9]. The cryptographic algorithm can be 
implemented either in software or in hardware. The 
dedicated hardware implementation is used for those 
systems where physical safety and low-power consumption 
are important. Recently, some cases of low-power and 
small-area hardware implementation for the security of IoT, 
smart card, and NFC have been announced [10, 11]. 

In this paper, we designed a LEA crypto-processor for IoT 
applications, which supports three key lengths of 128, 192, 
256 bits. The LEA crypto-processor was verified by FPGA 
implementation, and was fabricated as a test chip. After the 
LEA block cipher algorithm will be briefly explained in 
section II, the design of the LEA crypto-processor will be 
discussed in section III. Some functional verification and 
hardware implementation results are described in section IV, 
and conclusion will be followed in section V. 

 
 

II. LIGHTWEIGHT BLOCK CIPHER ALGORITHM LEA [5] 

 
The LEA is a symmetric key block cipher developed by 

NSRI (National Security Research Institute), which has a 
block size of 128 bits. The algorithmic structure of the LEA 
is similar to Feistel structure, and round function is based on 
ARX (Addition, Rotation, and XOR) operations. It is known 
that the ARX operations of 32 bits in round function make it 
suitable for software platform. Since the LEA does not use 
nonlinear substitution tables (S-box), it is also well suited to 
hardware implementation. 

Encryption and decryption processes of the LEA are 
depicted in Figure 1, which consist of round key scheduling 
and round functions. The encryption (or decryption) is 
carried out by consecutive operations of 24/28/32 rounds 
depending on the key length of 128/192/256 bits. Round 
keys of 192 bits to be used in round transformation are 
expanded from master key of 128/192/256 bits. 
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Fig. 1. Block cipher LEA 

 
Decryption is the reverse process of encryption, which 

requires reversed key scheduling and inverse round 
functions. Modulo additions are used in encryption process, 
but modulo subtractions are used in decryption. The rotation 
operations for encryption and decryption are carried out in 
opposite directions. 

A pseudo code for encryption process is shown in figure 
2(a). Encryption process consists of key scheduling and 
encryption function. The encryption key scheduling 
௜݈݁ݑ݄݀ܿݏݕ݁ܭ

௘௡௖  generates round keys ܴܭ௜
௘௡௖  ሺ0 ൑ ݅ ൑

ݎܰ െ 1ሻ  of 192 bits for ܰݎ  encryption rounds. The 
encryption function ݐ݌ݕݎܿ݊ܧ transforms a plaintext ܲ of 
128 bits to a ciphertext ܥ of 128 bits using round keys 
௜ܭܴ

௘௡௖ and round function ܴ݀݊ݑ݋௘௡௖. Figure 2(b) shows a 
pseudo code for decryption process. Decryption process 
consists of key scheduling and decryption function. The 
decryption key scheduling ݈݁ݑ݄݀ܿݏݕ݁ܭ௜

ௗ௘௖  generates 
round keys ܴܭ௜

ௗ௘௖ ሺ0 ൑ ݅ ൑ ݎܰ െ 1ሻ of 192 bits for ܰݎ 
decryption rounds. The decryption function ݐ݌ݕݎܿ݁ܦ is the 
inverse function of ݐ݌ݕݎܿ݊ܧ, which transforms a ciphertext 
ܥ  to a plaintext ܲ  using round keys ܴܭ௜

ௗ௘௖  and round 
function ܴ݀݊ݑ݋ௗ௘௖. 
 

 
(a) 

 
(b) 

Fig. 2. Pseudo code for encryption and decryption of LEA (a) Encryption 
(b) Decryption 

 

The i-th ሺ0 ൑ ݅ ൑ ݎܰ െ 1ሻ  round for encryption has 
operations as shown in figure 3(a). The state value ௜ܺାଵ ൌ
ሺ ௜ܺାଵሾ0ሿ, ௜ܺାଵሾ1ሿ, ௜ܺାଵሾ2ሿ, ௜ܺାଵሾ3ሿሻ  is obtained by XOR 
operation of state value ௜ܺ ൌ ሺ ௜ܺሾ0ሿ, ௜ܺሾ1ሿ, ௜ܺሾ2ሿ, ௜ܺሾ3ሿሻ 
with round key ܴܭ௜

௘௡௖ ൌ 	 ሺܴܭ௜
௘௡௖ሾ0ሿ, ௜ܭܴ

௘௡௖ሾ1ሿ, ௜ܭܴ
௘௡௖ሾ2ሿ,

௜ܭܴ
௘௡௖ሾ3ሿ, ௜ܭܴ

௘௡௖ሾ4ሿ, 	 ௜ܭܴ
௘௡௖ሾ5ሿሻ , modulo addition in 32 

bits, bit rotation (ܴܱܮଽ, ܴܱܴହ, ܴܱܴଷሻ, and rotation in 32 
bits. On the other hand, the i-th round for decryption process 
has operations as depicted in figure 3(b). The state values 
௜ܺାଵ ൌ ( ௜ܺାଵሾ0ሿ, ௜ܺାଵሾ1ሿ, ௜ܺାଵሾ2ሿ, ௜ܺାଵሾ3ሿሻ is obtained by 

XOR operation of state value ௜ܺ ൌ ሺ ௜ܺሾ0ሿ,
	 ௜ܺሾ1ሿ, ௜ܺሾ2ሿ, ௜ܺሾ3ሿሻ  with round key 
௜ܭܴ

ௗ௘௖ሺܴܭ௜
ௗ௘௖ሾ0ሿ, ௜ܭܴ

ௗ௘௖ሾ1ሿ, ௜ܭܴ
ௗ௘௖ሾ2ሿ, ௜ܭܴ

ௗ௘௖ሾ3ሿ, ௜ܭܴ
ௗ௘௖ሾ4ሿ,

௜ܭܴ
ௗ௘௖ሾ5ሿሻ , modulo subtraction in 32 bits, bit rotation 

(ܴܱܴଽ, ,ହܮܱܴ ଷሻܮܱܴ  and rotation in 32 bits. The key 
scheduling consists of AR (Addition, Rotation) operations 
and constant value generation that generates constant values 
for modulo operation. The number of constants generated 
depends on master key length. The AR operation is applied 
in opposite order depending on encryption or decryption. 

 

 
(a) 

 
(b) 

Fig. 3. Round functions for LEA encryption and decryption (a) Encryption 
(b) Decryption 

 
Figure 4 shows pseudo code for the key scheduling of 

encryption process. The encryption key scheduling 
generates round keys of 192 bits ܴܭ௜

௘௡௖ . It performs 
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modulo addition of master key with constant value in 32 
bits, and bit rotation. The round keys for decryption process 
are generated in the same way as that of encryption except 
for the relationship of ܴܭ௜

ௗ௘௖ ൌ 	 ே௥ି௜ିଵܭܴ
௘௡௖ . 

 

 
(a) LEA-128 

 
(b) LEA-192 

 
(c) LEA-256 

Fig. 4. Pseudo code for LEA encryption key schedule (a) LEA-128 (b) 
LEA-192 (c) LEA-256 

 
 

III. DESIGN OF LEA CRYPTO-PROCESSOR[12] 

 
A crypto-processor for LEA is designed, which supports 

three key lengths of 128/192/256 bits. The LEA processor 
consists of round block, key scheduler, and control block as 
shown in figure 5. The round block performs round 
transformations of 24/28/32 rounds depending on the key 
length of 128/192/256 bits. The key scheduler generates 
round keys of 192 bits that are used in round operation. The 
round block was designed with 32-bit data-path, so one 
round operation takes four clock cycles. To achieve 
area-efficient implementation, some design considerations 
were taken into account for sharing hardware resources of 
the key scheduler supporting three key lengths, as well as 
the round block performing encryption and decryption 
operations. 

 

 
Fig. 5. LEA encryption/decryption processor 

 
A. Round Block 

The round block receives a plaintext (or ciphertext) of 
128 bits and a round key of 192 bits generated by key 
scheduler, and performs round transformations. Figure 6 
shows the round block that consists of four 32-bit 
registersሺܺ0~ܺ3ሻ, XORs, modulo adders/subtractors in 32 
bits, rotators and multiplexors. The round block was 
designed to share hardware resources including registers, 
XORs and modulo adder/subtrator for encryption and 
decryption in order to achieve area-efficient implementation.  

The plaintext (or ciphertext) of 128 bits enters into the 
round block in 32 bits at a time, taking four clock cycles. 
The data entered in register ܺ0	  moves to the next register 
in the order of ܺ0 → ܺ1 → ܺ2 → ܺ3 . After completing 
plaintext (or ciphertext) input, round operation begins. Each 
round operation requires 3/3/4 clock cycles depending on 
the key length of 128/192/256 bits. The ciphertext (or 
plaintext) is obtained after repeating 24/28/32 round 
operations. 

 

 
Fig. 6. Round block diagram 

 
a) Round operation for encryption 

The round operation for encryption includes round key 
additions (XOR operations) of rk0 with ܺ2, and rk1 with 
ܺ3, where rk0 and rk1 are round keys generated by key 
scheduler. These two results of XOR operations are added in 
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modulo 32, then the result is rotated depending on the order 
of clock cycles as following; at the first clock cycle, it is 
rotated to the right by 3 bitsሺܴܱܴ3ሻ. At the second clock 
cycle, it is rotated to the right by 5 bitsሺܴܱܴ5ሻ. At the third 
clock cycle, it is rotated to the left 9 bitsሺܴܱ9ܮሻ. The rotated 
result is saved in the register ܺ0. At the same time, data 
stored in the registers are shifted to the right in 32 bits. After 
shifts of ܺ0 → ܺ1 → ܺ2 → ܺ3 are repeated for three clock 
cycles, one round operation is completed. As a result of 
these operations, data stored in registers ܺ0, ܺ1, ܺ2, ܺ3 are 
paired by (ܺ2, ܺ3), ሺܺ1, ܺ2ሻ, (ܺ0, ܺ1ሻ to be used in the 
operation of next cycle. 

 
b) Round operation for decryption 

In decryption, round keys are used in reverse order of 
encryption. In addition, the order of operations in round 
function for decryption is ′ܴ݊݋݅ݐܽݐ݋ → ݊݋݅ݐܿܽݎݐܾݑܵ →
ܱܴܺ′, whereas that of the encryption process is ′ܱܴܺ →
݊݋݅ݐ݅݀݀ܣ → ′݊݋݅ݐܽݐ݋ܴ . The direction of rotation for 
decryption is opposite to the encryption, and modulo 
addition is replaced by modulo subtraction. Moreover, the 
data stored in registers moves to the opposite direction, 
ܺ3 → ܺ2 → ܺ1 → ܺ0. Similar to the encryption, a round 
operation takes three clock cycles, and the data in register 
ܺ0 is rotated depending on the order of clock cycles as 
follows; at the first clock, data is rotated to the right by 9 
bitsሺܴܱܴ9ሻ, then it is rotated to the left by 5 bitsሺܴܱ5ܮሻ at 
the second clock, finally it is rotated to the left by 3 
bitsሺܴܱ3ܮሻ at the third clock cycle. 
 
B. Key Scheduler Block 

The round keys of 192 bits used in the round operations 
are generated by key scheduling algorithm. Figure 7 shows 
the key scheduler proposed in this paper, which consists of 
eight registers of 32 bits; XOR operators, 32-bit modulo 
adders/subtractors, rotators. As shown in figure 7, the key 
scheduler has eight 32-bit registers ሺܶ0~ܶ7ሻ . They are 
separated into two groups working in parallel, the registers 
with even index ሺܶ0, ܶ2, ܶ4, ܶ6ሻ and the registers with odd 
index ሺܶ1, ܶ3, ܶ5, ܶ7ሻ. 

 

 
Fig. 7. Proposed key scheduler 

 
The key scheduler also includes a constant generator for 
constant value δ to be used in key expansion. Depending 
on the key length of 128/192/256 bits and 
encryption/decryption modes, the key scheduler operates in 
different ways. Some multiplexers are controlled by signal 
k_mode that determines one of key scheduling of LEA-128, 
LEA-192, or LEA-256 depending on key length. 
The key scheduler was designed to share hardware resources 
for encryption and decryption, as well as for key length in 
order to minimize hardware. 
The master key enters into the register ܶ0  and ܶ1 
alternately in 32 bits at a time. The data in registers shift as 
follows; ܶ0 → ܶ2 → ܶ4 → ܶ6  and ܶ1 → ܶ3 → ܶ5 → ܶ7 . 
The key scheduling of LEA-128 (i.e., key length is 128-bit) 
requires four 32-bit registers, and it takes four clock cycles 
per round. We devised an efficient scheme to reduce one 
clock cycle to generate round key. The idea is based on the 
register arrangement in the key scheduler. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Timing relations of key scheduling and round transformation (a) key 
scheduling of LEA-128 in [13] (b) proposed key scheduling of LEA-128 (c) 
key scheduling of LEA-256 in [13] (d) proposed key scheduling of 
LEA-256 
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Since the key scheduler in our design has six 32-bit 
registers, the intermediate keys generated previously round 
can be saved in unused parts of the registers, and they can be 
outputted by using multiplexer. This key scheduling requires 
three clock cycles per round rather than four clock cycles 
per round in [13], resulting in the clock cycle reduction. 

The similar idea was applied to the key scheduling of 
LEA-256 (i.e., key length is 256-bit). It requires four clock 
cycles per round to generate round key. Three clock cycles 
are used for key scheduling and one clock cycle is used for 
shift & save operation. 

Figure 9 shows a comparison of timing relationships for 
round transformation and key scheduling between our 
design and the design of [13]. In the LEA-128 mode shown 
in Figure 9-(a) and (b), our design requires three clock 
cycles per round as compared to four clock cycles per round 
in [13]. Consequently, the performance is improved by 20% 
in encryption mode and 23% in decryption mode. In the case 
of LEA-256 mode shown in Figure 9-(c) and (d), our design 
requires four clock cycles per round as compared to six 
clock cycles per round in [13]. Consequently, the 
performance is improved by 33% and 32% in encryption 
mode and decryption mode, respectively. 

 
 

IV. FUNCTIONAL VERIFICATION AND CHIP TEST RESULTS 

 
The LEA crypto-processor was designed in Verilog HDL, 

and was verified by FPGA implementation. Figure 9-(a) 
shows the FPGA verification set-up that consists of FPGA 
board, UART interface, and GUI software. The Xilinx 
Virtex5 XC5VSX-50T FPGA device is used. Master key and 
plaintext (or ciphertext) are sent from PC to FPGA through 
RS232C, and test results of ciphertext (or plaintext) are sent 
from FPGA to PC. Figure 9-(b) shows the FPGA 
verification results. The left Lena image is the original data 
used as test vector. The center part shows the cipher-image 
obtained from the encryption of the original Lena image. 
The right part shows the decryption result of the 
cipher-image. The original Lena image was restored from 
the decryption of cipher-image. The FPGA verification 
results confirm that the LEA crypto-processor functions 
correctly. 

 

 
(a) 

  
(b) 

Fig. 9. FPGA verification results of LEA crypto-processor (a) FPGA 
verification set-up (b) FPGA verification results 

 
Figure 10 shows the design flow of the LEA processor 

which was fabricated in a 0.18-um CMOS process. The LEA 
processor modeled in Verilog HDL was verified by 
functional simulation using Modelsim, and then it was 
synthesized to gate-level by using a 0.18um standard cell 
library. Formality check was carried out between RTL 
modeling and the netlist extracted from synthesis. For the 
sign-off of front-end design, the pre-layout STA (static 
timing analysis) using PrimeTime and pre-layout timing 
simulation using VCS were carried out. The layout of the 
chip was designed by auto P&R (place & route) using Astro, 
and then equivalence between gate-level netlist and layout 
was verified by formality check. In addition, post-layout 
STA and timing simulation were performed with the 
back-annotation of the parasitic RC effects extracted from 

Fig. 10. Design flow of the LEA crypto-processor 
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the layout using Star-RCXT. Finally, layout verification was 
done by DRC (design rule check) and LVS (layout versus 
schematic) using Calibre. Figure 11 shows the chip layout. 
The maximum clock frequency estimated by STA is 179 
MHz. At the maximum frequency, the estimated throughputs 
are about 286.4/257.4/173.6 Mbps for encryption, and about 
297.6/ 257.4/172.3 Mbps for decryption depending on the 
key length of 128/192/256 bits. 

 

 
Fig. 11. Layout of LEA crypto-processor 

 
Figure 12 shows the test set-up, which consists of test 

board and GUI software on PC. The test board contains a 
socket where a test chip is mounted, a FPGA device of 
Xilinx Spartan3 XC3S1000, and some switches. In order to 
send test vectors from PC to the test board, and to receive 
test responses from the test board, UART and wrapper 
circuits are implemented in the FPGA device on the test 
board. 

 

 
Fig. 12. MPW chip test result of LEA core 

 
GUI software on PC displays the test vectors and test 

responses. Figure 12 shows that the test results of the LEA 
crypto-processor. Test vector (Lena image) are sent to the 
wrapper implemented in the FPGA, then are moved into the 
test chip (LEA crypto-processor). The test chip encrypts the 
test vectors, and sends cipher-image to the wrapper. Then 
the cipher-image stored in the wrapper is sent back to PC via 
UART. As can be seen in the center part of the display, the 
Lena image was converted into random values by 
encryption. The right part of the display shows the 
decryption result of the cipher-image. The original Lena 
image was reconstructed by decryption. The test results 
show that the LEA crypto-processor functions correctly. All 
of the 22 chips tested works correctly, resulting 100% yield. 

Table I compares our design with the LEA processor of 
[13]. The LEA crypto-processor designed in this paper 
supports three key lengths, but the LEA processor of [13] 
supports only one key length of 128 bits. Therefore, direct 
comparison of hardware complexity is unfair. The estimated 
throughput of our LEA processor is about 99~177 Mbps 
when operating with 100 MHz clock, which means about 30 
percent higher than that of the LEA processor of [13]. 

 
 

V. CONCLUSIONS 

 
A LEA crypto-processor design supporting three key 

lengths of 128/192/256 bits is discussed. Some design 
optimizations were considered to achieve area-efficient 
implementation, which share hardware resources for 
encryption and decryption, as well as key expansion for 
three key lengths. In addition, a new key scheduling scheme 
was devised to reduce the number of clock cycles required 
per round, which results in performance increase by 
20~30%. 

 
TABLE I. 

Comparison of LEA cores

 

 
The LEA crypto-processor was fabricated in a 0.18-um 

CMOS process. The chip test results show that the 
encryption and decryption for the key length of 128/192/256 
bits work correctly. The throughputs, estimated from 
simulation for a clock frequency of 179 MHz, are about 
286.4/257.4/173.6 Mbps for encryption and about 
297.6/257.4/172.3 Mbps for decryption depending on the 
key length. The LEA crypto-processor can be used as an IP 
in security IC for IoT and mobile devices that require low 
power and small-area. 
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