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Abstract – Digital design automation software tools have been 

very successful in achieving performance gains over the past 50 

years as system IC density continues to increase. As the design 

of these mixed signal systems increases, the simulation time for 

verifying new algorithms becomes a significant part of overall 

system development time. However, it cannot be accurately 

verified using existing verification tools. In this thesis, we 

propose a programmable and flexible 10Gb/s transceiver that is 

a structure in which all the analog blocks that can be reused 

are implemented in the IC and the digital blocks that have 

always been a problem due to the difficulty of verification are 

implemented in the FPGA as a verification tool of mixed signal 

systems. 

 

 
I. INTRODUCTION 

 

Most modern high-speed serial links are designed with 

analog blocks and synthesized digital blocks. In other 

words, mixed-signal system design is dominant. The main 

reason for the mixed system design is that the digital control 

block is designed and synthesized using VHDL language, 

which makes it much easier to design a complex digital 

system than to design it using full-custom. Based on these 

advantages, various digital functions are integrated in the IC 

to control the entire system. Examples of synthesized digital 

blocks include digital loop filters, controllers, and 

calibrators. 

However, as the design of mixed-signal systems are 

caused by the system level functionality offered by 

synthesized digital blocks. 

Most of operational issues of mixed signal systems are 

caused by the system level functionality offered by 

synthesized digital blocks. If there is a problem in the 

system level functionality of synthesized digital blocks 

caused by the lack of verification, the entire system often 

behaves erroneously. On the other hand, analog blocks can 

only be reused without major problems by adjusting only 

small tweaks of existing blocks most of the time. 

These problems are caused by the limitation of the 

method of verifying mixed-signal systems. Currently, there 

is no system-level simulation methods that can accurately 

and quickly verify mixed-signal systems. The actual 

operation of the chip is done in seconds, because we can 

only test micro seconds using existing simulation tools. 

Therefore, most of them are verified using only matlab or 

verilog level simulation, so the BER can only be confirmed 

at the level of 1𝑒−6 , which is an uncertain verification 

method. For these reasons, there are problems with various 

functionality issues in the operation of the actual chip. 

To solve these problems, the proposed solution is a design 

of a programmable and flexible transceiver. The mixed 

signal system consists of a few analog blocks and 

synthesized complex digital blocks. 

 

 
II. EXPERIMENTS 

 

A. System Architecture 

The overall structure and operation of a circuit design is 

shown in Fig. 1. Basically, the circuit design is implemented 

in the analog blocks required for the High speed serial link, 

that is, the basic TRX for the transmission and reception of 

10Gb/s data. In the FPGA, there are synthesized digital 

blocks, which can control basic analog TRX blocks using 

the data coming from the chip. 

 

 

Fig. 1. Example of a chip-FPGA communication 
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As a result, the high speed serial transmission is executed 

through the connection of the chip and the FPGA. A 10Gb/s 

data is sampling, retiming, demuxing in the chip and enters 

the FPGA. 

The FPGA sends out a signal to control the internal 

blocks of the chip using the received data. Then, the data is 

sent back to the TX of a chip from a FPGA, and the TX of a 

chip is muxing them to transmit serial data to 10Gb/s. As a 

result, the high speed serial transmission is executed through 

the connection of the chip and the FPGA. 

 

B. Transceiver Architecture 

The proposed transceiver as shown in Fig. 2 is configured 

through a connection between the proposed IC(LEGO chip) 

and the FPGA. The proposed IC implements basic analog 

blocks for operation as a 10Gb/s transceiver. Each block of 

the proposed IC transmits necessary information to the 

FPGA to implement various digital functions. 

In addition, the proposed IC can be a stand-alone 10Gb/s 

transceiver. The proposed IC has receiver, transmitter, clock 

generator and digital blocks needed to form a closed loop 

within the IC, enabling it to operate as a stand-alone 10Gb/s 

transceiver.  

In the FPGA, any digital functions can be implemented 

based on the information provided by the proposed IC. 
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 Fig. 2. Top Architecture of the transceiver. 

 

C. Receiver Architecture 

The receiver consists of analog blocks for generation 

information to send to the FPGA. Fig. 3 shows the block 

diagram of a 10Gb/s RX, which consists of a 

continuous-time linear equalizer(CTLE), a limiting 

amplifier(LA), CML divider and CMOS divider for SRCG, 

CMOS quadrate samplers with a one-tap loop-unrolled 

decision feedback equalizer(DFE), a retime, a 4:64 

de-multiplexer(DEMUX), a synthesized CDR logic block 

for making a closed loop within the IC, and a 

phase-rotator-based multiphase clock generator(CML 

divider, Harmonic Rejection Poly Phase filter, Phase rotator, 

Phase interpolator(PI)). 

The CTLE and LA recover the data damaged by channel 

loss. CMOS quadrate samplers with a one-tap loop-unrolled 

decision feedback equalizer sample 10Gb/s data. The 

DEMUX and re-timer convert 10Gb/s serial data into 

156.25MHz parallel data to meet the maximum operating 

speed in the FPGA. The phase rotator adjusts the phase of 

multiphase clocks and samples the data. 

As the result, as shown in Fig. 4, the receiver transmits 

various information generated by analog blocks such as 

de-multiplexed data and edge, divided data for SRCG, and 

the system clock for the operation of digital functions in the 

FPGA, which is processed by the FPGA and used to 

implement various digital functions. 
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Fig. 3. The Architecture of the receiver. 
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between the receiver and the FPGA. 
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As shown in Fig. 5, simple digital blocks(CDR logics 

block) are synthesized in the receiver to form a closed loop 

in the IC and to operate as a stand-alone 10Gbps transceiver. 

A CDR logic and accumulator based on a Nyquist rate 

BBPD are used for phase lock and A FIFO transmits the 

parallel data to the transmitter in the IC. 
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D. Transmitter Architecture 

The transmitter transmits 10Gb/s data by serializing 64 

parallel data processed at the FPGA. Fig. 6 is the block 

diagram of the 10Gb/s TX. The TX consists of a 64:4 MUX 

implemented in static CMOS logic gates followed by a tap 

generator, and parallel 4:1 MUXs. 
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 Fig. 6. The Architecture of the transmitter. 

 

The FIFO in the FPGA receives 64 parallel data from the 

receiver and transfers it to the transmitter. TX eliminates the 

pre-cursor ISI of data through pre-emphasis and serializes it 

to transmit the 10Gb/s data. That is, it acts as a transceiver 

through the receiver-FPGA-transmitter. 
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E. FIFO Architecture 
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Fig. 8. The Architecture of the FIFO. 

 

Fig. 8 is the block diagram of the FIFO. Any digital 

functions can be implemented in the FPGA. Each function is 

implemented by receiving the necessary information from 

the IC to implement it. For example, FPGA has digital 

blocks that control internal analog blocks in the IC, such as 

a phase rotator controller, Digital loop filter to control VCO, 

and Jitter-suppression loop for SRCG. Alternatively, digital 

functions for testing the performance of IC, like PRBS 

Generator/Checker, PRBS-based random generator can be 

implemented in the FPGA. 

Basically, each digital function in the FPGA should serve 

to transmit control signals to the IC after they are processed 

data form the IC. 

 

F. Examples of the digital functions in the FPGA 
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 Fig. 9. Implementation of the phase rotator controller. 

 

Fig. 9 shows the implementation of the phase rotator 

controller. The controller of phase rotators in the IC is 

implemented in the FPGA. The implementation process is as 

follows. 

The de-multiplexed data and edge samples enter the phase 

rotator controller of the FPGA from the receiver of the 

proposed IC. They are provided to the CDR logic in the 

controller of the FPGA to accomplish single-edge-sensitive 

bang-bang phase detection. Then, control signals are 

generated by controlling the phase of phase rotators in the 

digital domain through accumulation and truncation. 

Consequently, control signals are transmitted from the 

FPGA to the IC to control phase rotators. That is, the loop 

bandwidth of the receiver and transceiver can be adjusted in 

the digital domain through the phase rotator controller in the 

FPGA. 
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Fig. 10 shows the implementation of the digital loop filter 

(DLF) for adjusting the frequency of the VCO. The CG DLF 

is composed of digital low-pass filter with adder, 

accumulator and dithering algorithm. The implementation 

process is as follows. 

The frequency difference between the reference clock and 

the VCO clock is entered into the DLF in the FPGA through 

BBPFD in the clock generator of the IC. The accumulator in 

the DLF continues to accumulate frequency errors, of which 

6 MSBs are used to coarse tuning the VCO frequency. Fine 
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tuning signals are composed of binary and thermometer 

codes to reduce the silicon area while minimizing the 

switching glitch. 

Control bits in the DLF, which cannot be changed 

through a simulation, can be changed freely in the DLF 

implemented by the FPGA. Therefore, it is possible to check 

in real time how the frequency of VCO is adjusted 

accordingly. 
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 Fig. 11. Implementation of the Jitter tolerance self-test. 

 

Fig. 11 shows the implementation of jitter tolerance 

(JTOL) self-test. JTOL self-test is possible by implementing 

PRBS Generator, checker, and PRBS-based random 

generator in the FPGA. The implementation process is as 

follows. 

The transmitter in the IC sends jitter-free 10Gb/s data to 

the receiver in the IC through the PRBS Generator in the 

FPGA. A PRBS-based random generator in the FPGA 

injects jitter into the phase in the receiver of the IC. The 

phase rotator in the receiver tries to filter out the injected 

accumulation jitter and align the output clock signal with the 

jitter-free transceiver output data. Then, The output clock of 

the RX phase rotator samples the data and sends it to the 

PRBS Checker in the FPGA to verify BER. Consequently, 

we can measure JTOL of the IC by adjusting the amount of 

jitter injected from the PRBS -based random generator in the 

FPGA. 

It is possible to verify the performance of the IC 

accurately and quickly by implementing the JTOL self-test 

in the FPGA that can hardly be verified in the simulation 

due to take too long. 

 

G. FPGA Interface 

The maximum speed that can be operated within the 

FPGA must also be considered to implement various digital 

functions in the FPGA. In order to determine the maximum 

clock speed of the digital function to be implemented in the 

FPGA according to the maximum operating speed of the 

FPGA, a simulation tool of the FPGA, STRATIX V was 

used for testing.  

The maximum operating speed of the FPGA was 

177.4MHz as a result of checking with the phase rotator 

controller which has the longest cycle among control 

schemes used in our lab. Fig 20 is the result of the test. 

Based on result shown in Fig. 12, the speed of the system 

clock(156.26MHz) to be sent to the FPGA inside the IC and 

the speed of the de-multiplexed data (10G/64, 156.25MHz) 

were determined to ensure accurate design. 

 

 

 

 

Fig. 12. The result of the test 

for determining the maximum operating speed in digital functions. 

 

 
III. RESULTS AND DISCUSSION 

 

A. Simulation setup 

The proposed transceiver operates by communicating 

with the IC and the FPGA. Fig. 13 is a simulation setup to 

verify exact communication between the IC and the FPGA 

through the LVDS interface. 

 

 
Fig. 13. Simulation setup. 

 

The first step is to verify that the information is sent to the 

FPGA through the LVDS transmitter of the IC, and that the 

information is forwarded to the synthesized digital block 

exactly through the LVDS receiver of the FPGA. 

The second step is to verify that control signals generated 

by the synthesized digital block are forwarded to the IC 

through the LVDS transmitter of the FPGA, and that control 

signals accurately control the target block in the IC through 

the LVDS receiver. 

As a result, simulations were performed to verify that 

various digital functions implemented between the FPGA 

and IC were correctly operated through the LVDS interface. 

 

B. System verification 
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 Fig. 14. The simulation for phase lock. 

 

Fig. 14 shows the result of a simple simulation to verify 

the proposed system. I implemented the phase rotator 

controller in the FPGA and confirmed that the phase lock of 

the proposed transceiver is correct. 

In order to meet the actual operating environment, the 

setup is as follows. De-multiplexed data/edge samples in the 

IC are transmitted to the FGPA through the LVDS 

transmitter, and then, the LVDS receiver of the FPGA 

receives these data/edge samples and controls the phase 

rotator through the phase rotator controller. 
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Fig. 15. (a) 1st order loop coefficient. (b) 2nd order coefficient. 

 

Fig. 15 shows the result of the phase lock simulation. It 

can be seen that a coefficient of the 1st order loop converges 

to a specific value by phase lock between the FPGA and the 

IC as shown in the Fig. 15 (a). 

In addition, even if there is a frequency offset, the 

frequency offset is removed by the 2nd order loop as shown 

in the Fig. 15 (b), so phase lock can be confirmed. 
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 Fig. 16. The simulation for verifying operation 

of the proposed transceiver. 

 

Fig. 16 shows another result of a simple simulation to 

verify the proposed system. This is a simulation process to 

verify that the proposed transceiver with the combined IC 

and FPGA operates correctly. 

It is simulated to verify that the 10Gb/s NRZ data coming 

into the IC is transmitted correctly through the receiver of 

the IC, the FIFO of the FPGA, and the transmitter of the IC. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The output eye diagram of the TX output. 

 

Fig. 17 is the eye diagram measured by the simulation. It 

was simulated at TT, 27 degrees, 1V corner. The eye 

diagram shows that the voltage swing is 678mV and the 

deterministic jitter is 2.1ps, which means that that the data is 

transmitted accurately with very little noise through the 

proposed transceiver. 

 
Fig. 18. The output eye diagram of the TX output. 

 

Fig. 18 is the layout of the proposed transceiver. It was 

designed with a 65nm process and used a 1V supply voltage.  

The proposed transceiver includes one TRX lane targeting 

10Gb/s data rate. As shown in the Fig. 18, a total of 336 

LVDS I/Os were placed in two rows on the edge of the IC to 

communicate with the FPGA. 
 

TABLE I. 

Power consumption of the full chip. 

65nm CMOS

1V

10Gb/s

AFE(Linear EQ + LA) 48.91mW

Datapath(Sampler + DFE + DEMUX) 12.78mW

Clockpath(CML div + PR + 9PI) 9.94mW

64:4 MUX 1.49mW

Current summer(FFE) 19.63mW
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Fig. 19. Test board of the proposed transceiver. 

 

Fig. 19 shows an environment of testing our chip-FPGA 

connection. We used a SPI protocol for measurement of the 

chip. 

Fig. 20 shows its measured eye diagram at LA output 

using SPI control. We confirmed that the eye diagram at LA 

output changes as controlled. 
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Fig. 20. Eye diagram of LA output, at 2Gb/s, 5Gb/s, 10Gb/s 

using a SPI 

  

Fig. 21. Phase locked VCO clock using DLF in the FPGA. 

 

Fig. 21 shows phase locked VCO clock using digital loop 

filter in the FPGA. We confirmed that stable VCO clock is 

generated through accurate communication between FPGA 

and chip. 

 
 

IV. CONCLUSIONS 

 

Using the proposed transceiver, various functions can be 

implemented by choosing analog blocks in the IC and digital 

functions in the FPGA and many functions that cannot be 

verified at the simulation level can be verified in real time, 

such as Jitter tolerance self-test, Jitter peaking check, 

Frequency synthesizer, CDR, real-time calibration scheme. 

The power consumption of the total chip is 124.35mW at 

10Gbps input data and the recovered clock jitter is 2.1𝑝𝑠𝑟𝑚𝑠 

and the total active area is 4𝑚𝑚2. 
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