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Abstract – This work presents a 2-stage distributed amplifier 
(DA) and a 2-stage cascaded single-stage distributed amplifier 
(CSSDA) in Samsung 65 nm CMOS technology. They are 
designed in cascode configuration to obtain broad bandwidth 
and high gain, and m-derived filter configuration is used for 
compact layout. The measurement results show a peak gain of 
10 dB of 2-stage DA and 13 dB of 2-satge CSSDA with the 3-dB 
bandwidth from 5 GHz to 20 GHz. S11 and S22 are better than 
-10 dB over the entire bandwidth. The chip sizes are 720 × 540 
μm2 and 580 × 450 μm2 for the 2-stage DA and the 2-stage 
CSSDA, respectively. 

 
 

I. INTRODUCTION 

 
Recently, as the era of Internet of Things (IoT) comes, the 

need for high-speed, high-capacity data transmission is 
increasing. The demand for broadband communication 
systems will continue to increase. In particular, broadband 
circuits are a key building block in various fields such as 
high-speed communication, high-frequency instrumentation 
devices and high-resolution imaging systems. Broadband 
amplifiers are an essential circuit block for such high-speed 
applications [1]-[3]. 

Distributed amplifiers have been popularly employed for 
broadband applications for their wideband characteristics. In 
this paper, distributed amplifiers in two different 
configurations are designed and fabricated in 65 nm CMOS, 
with the design emphases on low power and small chip area, 
for possible application to IoT devices. 

In Section II, the overview of conventional distributed 
amplifier (DA) and cascaded single-stage distributed 
amplifier (CSSDA) is presented. Section III describes the 
design of 2-stage DA and 2-stage CSSDA. In Section IV, 
discussions on the measurement results are presented. 

 
 

II. BACKGROUND 

 
A. Conventional Distributed Amplifier (DA) 

The bandwidth of resistively-loaded amplifiers is 
typically limited by gate and drain capacitance of transistors. 
In contrast, conventional DA uses a distributed matching 
technique where the input and output capacitance of a 
transistor can be absorbed by series inductors to form input 
and output artificial transmission lines, thereby providing 
wideband input and output impedance matching. 

Fig. 1 shows the conventional structure of a distributed 
amplifier in common source configuration. Inductors in the 
input and output artificial transmission line absorb the gate 
and drain capacitance of the transistors. In the input 
transmission line, input voltage wave is travelling and 
generating drain voltage waves, which are eventually 
combined in-phase at the amplifier output terminal. The 
signals reflected in the opposite direction of the input and 
output lines generate gain ripples and degrade input and 
output return losses. Therefore, the input and output lines 
must be terminated by a resistor matched to the 
characteristic impedance of each line, to absorb incoming 
waves and thus to eliminate reflection. If the gate and drain 
capacitance of the transistors are Cg and Cd, respectively, the 
characteristic impedances of the input and output artificial 
transmission lines with Lg and Ld can be expressed by 
Equation (1) and (2) [4]. 
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Fig. 1. Schematic of conventional distributed amplifier. 
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The maximum gain at low frequencies is given in 
following Equation (3). 

 

௩ܣ ൌ
1
2
	 ݊	 ݃	 ܼௗ,	 	 	 	 	 	 	 	 	 	 	 	 ሺ3ሻ 

 
where n is the number of distributed stages and gm denotes 
the transconductance of each stage (the source impedance is 
assumed to be matched to Zg). 

Conventional DA's exhibit wide bandwidth, high reverse 
isolation, and in general sufficient stability. However, due to 
the gate resistance of the transistors, the input line may have 
relatively high attenuation, resulting in amplifier gain 
reduction, especially at high frequencies [5]. In general, 
drain capacitance of CMOS transistors are smaller than the 
gate capacitance. Therefore, in order to make time delay of 
gate and drain line equal, additional capacitance is necessary 
at every drain node. Otherwise, the input and output lines 
may have different time delay per section, and therefore the 
output signals from each stage may not combine in-phase at 
the amplifier output, resulting in non-optimal gain. 
 
B. Cascaded Single-Stage Distributed Amplifier (CSSDA) 

Fig. 2 is a schematic of a CSSDA [6], which has the 
potential for higher gain than conventional DA. By 
cascading multiple DA's, wide bandwidth and high gain 
characteristics are achieved. The gain of conventional DA is 
increased in proportion to the number of stages, n, as shown 
in Equation (3), but the gain of CSSDA is increased 
exponentially with the number of stages, n, as shown in 
Equation (4) [7]. This CSSDA property makes it possible to 
realize higher gain with lower number of stages compared to 
a conventional DA, which is especially useful in CMOS 
processes where transconductance is typically low. The 
low-frequency gain of a CSSDA is given as follows. 
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In Equation (4), Zint is the characteristic impedance of the 
inter-stage artificial transmission line. Higher values of Zint 
in general will yield higher low-frequency gain, but at the 
expense of lower cutoff frequency. 

 In conventional DA, phase matching is required between 
the input and output lines as described above, but in 
CSSDA, there is no need for such phase matching since 
there is only one signal path from the input to the output. 

 
C. Structure of artificial transmission line 

There are two filter structures popularly used in the 
artificial transmission line: one is a constant-k filter, and the 
other is an m-derived filter [8]. The constant-k filter consists 
of series inductance and shunt capacitance as shown in Fig. 
3 (a). The cutoff frequency, fc, of this structure is given by 
Equation (5). 
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An m-derived filter is similar to the constant-k filter 

structure, but has mutual inductance between the two 
inductors, as shown in Fig. 3 (b). The cutoff frequency of 
this structure is given by 
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where k is coupling coefficient and M is mutual inductance. 
Since the coupling coefficient k is negative for the 
series-aiding connection, the cutoff frequency of m-derived 
filter is higher than that of constant-k filter for same LC 
product. 

 
 

III. DESIGN 

 
A. 2-stage DA 

In this paper, we designed a 2-stage conventional DA 
using the cascode structure in 65 nm CMOS as shown in 
Fig. 4. Cascode structure is in general suitable for 
distributed amplifiers due to their relatively high maximum 
available gain, high reverse isolation, stability and high 
output resistance. In addition, cascoding also reduces the 
Miller effect which may otherwise limit the bandwidth [9]. 

In order to increase the bandwidth and improve the return 

Fig. 2. Schematic of CSSDA. 

 
(a) Constant-k filter       (b) m-derived filter 

 
Fig. 3. Structure of artificial transmission line. 
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loss, an m-derived filter was used instead of the constant-k 
filter in the artificial transmission line. The two coupled 
inductors in the m-derived filter can be implemented by a 

single inductor with a center tap, which reduces the total 
inductor area by up to 40% compared to a constant-k design. 

 Fig. 5 shows simulated performance of the designed 
2-stage DA. All layout parasitics are carefully modeled by 
Advanced Design System (ADS). The 3 dB bandwidth of 
the 2-stage DA is from 4 GHz to 28 GHz with 12 dB peak 
gain. The S11 and S22 are better than -10 dB within the 
3dB-bandwidth. The designed amplifier consumes 110 mW 
of dc power with 46 mA of the total drain current. 

 
B. 2-stage Conventional Cascaded Single-Stage Distributed 
Amplifier (2-stage CSSDA) 

In addition to the 2-stage conventional DA, 2-stage 
CSSDA is designed in 65 nm CMOS as shown in Fig. 6. The 
designed CSSDA employs cascode structure for the same 
number of transistors, and the input and output artificial 
transmission line uses the m-derived filter instead of 
constant-k filter. 

The designed 2-stage CSSDA is implemented with 
stacked inductor shown in Fig. 7, which has a smaller 
footprint than a non-stacked inductor. Stacked inductor, 
while providing higher inductance than a non-stacked one 
for the same area, may have lower quality factor due to 
relatively high resistive loss [10]. 

Simulated performance of the designed 2-stage CSSDA is 
shown in Fig. 8. The 3 dB bandwidth is from 4 GHz to 26 
GHz with peak gain of 15 dB. The S11 and S22 are better than 
-10 dB within the 3 dB bandwidth. The total drain current is 
45 mA similar to the 2-stage CDA and the dc power 
consumption is 63 mW.  

 
 

IV. RESULTS AND DISCUSSION 

 
The designed 2-stage DA and 2-stage CSSDA are 

fabricated in 65 nm CMOS process. The S-parameters of the 
designed circuits are measured from 1 GHz to 30 GHz using 
on-wafer testing setup with Anritsu VNA. The measurement 
results are shown in Fig. 9. The peak gain of the 2-stage DA 
and the 2-stage CSSDA are measured to be 10 dB and 13 dB 
gain, respectively, which are lower than the simulation by 
approximately 3 dB. The 3 dB bandwidth is measured to be 
from 5 GHz to 20 GHz, which are narrower than the 
simulation. The discrepancy from the simulation is believed 

Fig. 4. Simulation results of the designed 2-stage DA. 
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Fig. 5. Schematic of the designed 2-stage DA 
in 65 nm CMOS process. 

Fig. 6. Schematic of the designed 2-stage CSSDA 
in 65 nm CMOS process. 

Fig. 7. Layout of stacked inductor. 
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to be due to random process variation and modeling 
inaccuracies. Measured S11 and S22 were below -10 dB from 
4 GHz to 22 GHz. 

The measured results confirm that the gain of the 2-stage 
CSSDA is higher than the 2-stage DA by 3 dB, while 
consuming only 60% of the dc power, as simulation 

predicts. 
The performance advantage of the CSSDA compared to 

DA, in terms of high gain and low dc power consumption, 
will be even greater if more than two stages are cascaded. 

Fig. 10 shows chip photographs of the 2-stage DA and 
2-stage CSSDA fabricated in this work. The chip sizes are 
720 × 540 μm2 and 580 × 450 μm2 for the 2-stage DA and 
the 2-stage CSSDA, respectively. The 2-stage CSSDA 
occupies only 65% of the chip area of the 2-stage DA since 
stacked inductors are used and no additional capacitors are 
necessary on the drain nodes for phase matching. 

Comparison with other CSSDA is shown in Table I. The 
distributed amplifiers in this work have smaller area and 
lower dc power consumption. 
 

TABLE I. 
Performance comparison table. 

Chip sizes are measured excluding pads. 

 
 

V. CONCLUSIONS 

  
In this paper, 2-stage distributed amplifier and 2-stage 

cascaded single stage distributed amplifier are designed in 
65 nm CMOS process, and measured by on-wafer testing 

 

 
setup. Broad bandwidth and high gain is obtained by using 
cascode structure and small area is obtained by using 
m-derived filter with stacked inductor in artificial 
transmission line. The 2-stage CSSDA shows peak S21 of 13 
dB while the 2-stage DA exhibits peak S21 of 10 dB. 
Measured results show that the CSSDA provides higher gain 
than the DA while consuming less dc power. 
 

 

Fig. 9. Measurement results of the designed DAs. 
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(a) 2-stage DA (chip size: 720 × 540 μm2) 

 

 
(b) 2-stage CSSDA (chip size: 580 × 450 μm2) 

 
Fig. 10. Chip photograph. 

Fig. 8 Simulation results of the designed 2stage-CSSDA. 
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