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Abstract - Advanced encryption standard (AES), most widely 
used to encrypt and decrypt data, is computationally intensive 
algorithm. In order to implement the AES encryption 
algorithm, the data must go through complicated operations 
composed of several steps. The AES encryption algorithm is 
generally used for internet-based applications. In this paper, 
we propose the AES core, which selects the operation mode for 
the block cipher. Also, we implement the AES core by using an 
field programmable gate array (FPGA) and verify the 
functionality of the AES core with prototype board. The 
implementation results are obtained using the AES block 
cipher processors. 

 
 

I. INTRODUCTION 

 
As the Internet of Things (IoTs) and data transmissions 

based on wireless communications develop rapidly, the IoT 
networks and devices are interchanging data more 
explosively. However, the threats on network or devices 
such as password attacks, spying and hacking have been 
increased dramatically [1]. As a result, the data security has 
become one of the essential and major factor for the 
protection and stability of system. For the protection of data 
from threatens, the cryptography is deployed to the various 
techniques for safe and secure communication [2]. 

In 2000, Rijndael algorithm was selected for a new 
Advanced Encryption Standard (AES) by the National 
Institute of Standard and Technology (NIST) [3]. AES, the 
most widely encryption algorithm used to encrypt or decrypt 
data, is computationally intensive applications. AES is a 
symmetric block cipher which means it uses a same key for 
encrypting and decrypting [4]. The secret keys are exploited 
to encrypt and decrypt plaintext with mathematical 
transformations. Data encryption standard (DES) [5], 
triple-DES algorithm [6], AES [7], and SEED [8] are widely 
used in standard symmetric cryptography algorithms. With 
the symmetric block cipher, AES has higher security level 
and is lower complexity than other encryption techniques 
using asymmetric method [9]. Both hardware and software 
implementation is available for AES design. However, 
adopting hardware implement for AES algorithm can make 

higher speed, throughput and consume lower power than 
software implementation [10]. 

In this paper, we propose a 128-bit AES encryption core 
with three different operation modes for secure data 
communication. The AES encryption core is able to select 
the operation modes, which are consists of Electronic Code 
Book (ECB), Cipher-Block Chaining (CBC), CounTeR 
(CTR) modes. In our previous research [11], we exploited 
the AES core to implement the hardware-based multicore 
block cipher processor. The simulation and field 
programmable gate array (FPGA) emulation results show 
the feasibility of our encryption core. Moreover, the 
verification with prototype board shows the feasibility of 
our proposal. 

The rest of the paper is organized as follows: In Section 2, 
we describe on AES algorithm and the three encryption 
modes. We present the system architecture in Section 3. 
Section 4 describes the simulation results and FPGA 
prototyping for the functional verification. The conclusion 
on AES encryption core and future work are presented in the 
Section 5. 

 
 

II. AES ENCRYPTION 

 
 AES block cipher core is SPN (Substitution Permutation 

Network) architecture. Substitution Permutation is the 
changed architecture that does not divide blocks  
concurrently. Substitution is a process, which converts the 
plaintext into the look-up table (LUT). The converted value 
is called 'state'. Permutation is operation, which multiplies 
state and fixed matrix. These feature enables the parallel 
design of the AES core for the performance efficiency. 

Figure 1 shows the AES algorithm system flow. AES 
algorithm consists of three steps: Initial Round, Round, and 
Final Round. Each part has four or less steps, 
AddRoundKey, SubBytes, ShiftRows, and MixedColumns. 
In the Initial Round, AddRoundKey step is processed. The 
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Fig. 1. AES algorithm system flow 
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AddRoundKey features the bitwise exclusive-OR (XOR) of 
each plaintext blocks with the key value. The result of the 
previous step (Round part) is repeated in SubBytes, 
ShiftRows, MixedColumns, and AddRoundKey process, 9 
times or 11 times. In the SubBytes step, input block value is 
replaced into the LUT value (S-Box). The upper 4 bits are 
used to row index of S-Box and the lower 4 bits are used to 
column index of S-Box. Therefore, we find and change each 
value from the S-Box. In the ShiftRows step, the value is 
rotated by the order of the column. For example, the zero 
order of column is rotated 0 time (do not rotate), the first 
order of column is rotated 1 time, the second order of 
column is rotated 2 times and the third is 3 times, i.e., if the 
first order of column is (01, 23, 45, 67), it is switched into 
(23, 45, 67, 01) in the ShiftRows step. The MixedColumns 
step has the complex product calculation and replacement 
process while each column working seperately. In the Final 
Round, the three steps except the MixedColumns are 
repeated one time. 

AES encryption modes is generally classified into 
feedback and non-feedback modes. In the feedback mode, 
the encryption of the next block must be implemented after 
the previous block encryption is completed. In contrast, each 
block of data can be encrypted respectively in non-feedback 
modes. We consider one feedback mode and two 
non-feedback modes as the AES operation modes. The 
detailed descriptions on operation modes are as follows. 

 
A. ECB Mode 

ECB mode is the simplest block cipher mode. Figure 2 
shows the ECB encryption process. The plaintext is divided 
into blocks, and each block is encrypted using block cipher 
encryption. Then, encrypted blocks are combined into the 
complete ciphertext. Since there is no dependency on the 

previous encryption result, the ECB mode can be processed 
simultaneously in multiple cores. In the ECB mode, the 
encryption of same data blocks always achieves the same 
encrypted results. Inversely, when decrypting in the ECB 
mode, it undergoes similar process as encrypting process. 
Separating ciphertext into blocks, decrypting each block and 
Combining block are the procedure of decryption. 

 
B. CBC Mode 

CBC mode has the highest security among the operating 
modes of AES. This encryption process features the bitwise 
XOR of the plaintext blocks with previous ciphertext 
calculated in the previous encryption. When the first block 
of the plaintext is entered, initialization vector (IV) is 
required for encrypting in the CBC mode. An IV is 
generated newly whenever the encryption operation is 
executed. The first input block is formed by an XOR 
between the first block of the plaintext and the IV. After the 
first encryption, a first ciphertext comes out and is using for 
the XOR operation with the second block of plaintext. 
Similarly, from now on, the results of each XOR operating 
between the previous ciphertext and the next plaintext block 
make the encrypted ciphertext by passing through Block 
Cipher Encryption. As this mode asks the previous 
ciphertext for the next encryption, it is difficult to implement 
in parallel processing. On the other hand, decrypting in the 
CBC mode can process in parallel. It doesn’t need the 
previous result for next decrypting, because the next 
decrypted plaintext is resulted by XOR operation between 
the previous ciphertext and the resulted block from Block 
Cipher Decryption. 

 
C. CTR Mode 

CTR mode exploits the AES block cipher into a stream 
cipher [12]. CTR mode uses the encrypted counter value and 
avoids the data dependency of the CBC mode [13]. 
Whenever a block cipher encryption is performed, the 
counter value (starting from zero) is increased by one, and 
the counter value is encrypted. So, the ciphertext is obtained 
as a bitwise XOR between each plaintext block and the 
encrypted counter value. Because there is no dependency of 
each encryption processing, it can be computed in parallel 
simultaneously, in several cores along with the ECB mode. 
Also, partial encryption is available in this mode, since each 
block has been indexing. Likewise, decryption could be 

 
Fig. 2. ECB mode encryption 

 
Fig. 3. CBC mode encryption 

 
Fig. 4. CTR mode encryption 
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done similarly by the series of encrypting process in the 
ECB mode. 

 
 

III. SYSTEM ARCHITECTURE 

 
The AES core, based on the open core crypto processor 

[14], is used as the computing unit of the block cipher 
processor. Figure 5 shows our AES core architecture 
supporting three operation modes. The AES core consists of 
the inout controller, AES controller and universal 
asynchronous receiver and transmitter (UART) module. The 
AES core executes a part of block cipher functions on the 
hardware scheduler platform. Our AES core exploits 128-bit 
encryption, we also designed the interface controller in order 
to use the inout pads due to the lack of chip level pins. 

 
A. Inout controller 

The inout controller is exploited to fulfill the 128-bit 
plaintext, key, IV input requirements by controlling with 
3-bit input. The inout controller controls 168 inout pads. In 
addition, the inout controller is able to start the AES 
encryption with previous inputs. Table I shows the inout 
controller operation with following input. 

 
TABLE I. 

Inout controller operation 

Port value Direction Description 
000 Input IDLE 
001 Input Lower data 
010 Input Upper data 
011 Input Key 
100 Input IV 
101 Output Ciphertext 
110 Input Encrypt with previous input 
111 Output UART mode 

 
First, input ‘001’ and ‘010’ is used to set the plaintext, 

operation mode, and counter pointer. The ‘011’ and ‘100’ is 
the input value to set the key and IV, respectively. When the 
encryption is finished, the port value is set as ‘101’ to notify 
the ciphertext and encrypted data is achieved with the flag 
signal. The encryption is restarted with the previous 
plaintext and operation mode with input ‘110’. With input 
‘111’ the encrypted data is transmitted through the UART 
module to verify the encrypted results. 

 

B. AES controller 
The AES controller consists of the buffer and AES-128 

module. The FIFO buffer receives the plaintext, encryption 
mode, key and IV from inout controller. The AES-128 
implement the Rjindael algorithm, which is described in 
Section 2 and includes the S-Box as a LUT for the 
encryption. 

We implement three operation mode (ECB, CBC, CTR) 
to support feedback and non-feedback through multiplexors 
and bitwise XOR. When the AES core operates in the CBC 
mode, the input multiplexor selects one of input signals that 
bitwise XORs between plaintext and IV. In the CTR mode, 
the output multiplexor selects one of results, which is 
bitwise XORs between plaintext and ciphertext. 

 
C. UART module 

The UART module receives the ciphertext from the AES 
controller after every encryption is finished. The UART 
module buffers the ciphertext in the buffer. When the inout 
controller controls the UART module to transmit the 
ciphertext using the UART module, the UART module 
transmits the encrypted data for checking the ciphertext. 

 
 
 

(a) 

 
(b) 

Fig. 8. CBC Mode (a) simulation result (b) FPGA emulation result 

(a) 

 
(b) 

Fig. 7. ECB Mode (a) simulation result (b) FPGA emulation result 

Fig. 5. AES encryption core architecture 
 

Fig. 6. AES controller architecture 
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IV. IMPLEMENTATION 

 
We verify the operations of AES core by comparing with 

software encryption results, simulation results and FPGA 
emulations. Figure 7 shows ECB mode encryption 
simulation and emulation results. We set the input and key 
data. When we start the encryption, we verify the result in 
simulation after 24 cycles. We check the emulation result 
using on FPGA. Figure 8 shows CBC mode encryption 
simulation results. This encryption process features the 
bitwise XOR of the plaintext blocks with previous 
ciphertext calculated in the previous encryption. We set the 
input, key and initial vector data. We verified the correctly 
results using the simulation and emulation. Figure 9 shows 
CTR mode encryption simulation results. CTR mode is 
combined ECB and CBC mode. To simulate the CTR mode,  

we set the input, key, and counter data. 
The AES core was fabricated by using Magnachip/Hynix 

0.18 µm CMOS technology. Core size is 3.5×3.5mm2 and 
operation frequency is 50 MHz with 3.3 V supply voltage as 
shown in Table II. 

 
TABLE II. 

Characteristics of the AES core 

 
  
For the verification of AES encryption core, we designed 

the prototype board. The prototype board includes AES core 
chip, an UART module and general purpose I/O (GPIOs). 
We also exploit an FPGA in order to set key, IV and 
plaintext and verify the encrypted ciphertext. After finishing 
the encryption, the AES core transmits the ciphertext 
through UART communication. Furthermore, the encrypted 
data is compared with software-based AES encrypted 
results. With these procedures, we conducted the verification 
of the AES core. Figure 10 illustrates the prototype board of 
the AES core for verification. As a result, Fig. 11 shows the 

encryption result of the AES core. We compared with 
software encrypted results with same key, IV and plaintext. 
We successfully demonstrated the feasibility of our AES 
core. 

 
 

V. CONCLUSIONS 

 
In this paper, we presented the AES core with three 

operating modes. Research environment is implemented by 
fabricating the AES core, which is integrated into ASIC, and 
producing the prototype board including the external 
memory. The performance analysis of the AES core is 
conducted by comparing the software-based AES encryption 
motion, along with making progress of parallel processing 
and scheduling of hardware.  

The AES core, which is designed, can be operated into 
three operation modes. Using the AES core which is 
integrated into ASIC, process three different types of 
encryption, and store the encrypted result into the external 
memory. If the system needs the decryption process to use 
encrypted data, the process can be decrypted by the software 
method. The AES core with three operations mode can 
enhance the security of the system by protecting the data 
effectively, and improve the performance by designing in 
hardware. We expect that the encryption core for data 
security will take an important role in IoT devices. For the 
future work, we plan to design the AES decryption core and 
merge with existing AES encryption core to build 
full-encryption and decryption system. 

 

 
Fig. 11. A verification result of AES core 

Fig. 9. CTR Mode Encryption Simulation Result 

 
Fig. 10. A prototype board for verification 
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