
IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

Abstract - Advanced encryption standard (AES), most widely
used to encrypt and decrypt data, is computationally intensive
algorithm. In order to implement the AES encryption
algorithm, the data must go through complicated operations
composed of several steps. The AES encryption algorithm is
generally used for internet-based applications. In this paper,
we propose the AES core, which selects the operation mode for
the block cipher. Also, we implement the AES core by using an
field programmable gate array (FPGA) and verify the
functionality of the AES core with prototype board. The
implementation results are obtained using the AES block
cipher processors.

I. INTRODUCTION

As the Internet of Things (IoTs) and data transmissions

based on wireless communications develop rapidly, the IoT
networks and devices are interchanging data more
explosively. However, the threats on network or devices
such as password attacks, spying and hacking have been
increased dramatically [1]. As a result, the data security has
become one of the essential and major factor for the
protection and stability of system. For the protection of data
from threatens, the cryptography is deployed to the various
techniques for safe and secure communication [2].

In 2000, Rijndael algorithm was selected for a new
Advanced Encryption Standard (AES) by the National
Institute of Standard and Technology (NIST) [3]. AES, the
most widely encryption algorithm used to encrypt or decrypt
data, is computationally intensive applications. AES is a
symmetric block cipher which means it uses a same key for
encrypting and decrypting [4]. The secret keys are exploited
to encrypt and decrypt plaintext with mathematical
transformations. Data encryption standard (DES) [5],
triple-DES algorithm [6], AES [7], and SEED [8] are widely
used in standard symmetric cryptography algorithms. With
the symmetric block cipher, AES has higher security level
and is lower complexity than other encryption techniques
using asymmetric method [9]. Both hardware and software
implementation is available for AES design. However,
adopting hardware implement for AES algorithm can make

higher speed, throughput and consume lower power than
software implementation [10].

In this paper, we propose a 128-bit AES encryption core
with three different operation modes for secure data
communication. The AES encryption core is able to select
the operation modes, which are consists of Electronic Code
Book (ECB), Cipher-Block Chaining (CBC), CounTeR
(CTR) modes. In our previous research [11], we exploited
the AES core to implement the hardware-based multicore
block cipher processor. The simulation and field
programmable gate array (FPGA) emulation results show
the feasibility of our encryption core. Moreover, the
verification with prototype board shows the feasibility of
our proposal.

The rest of the paper is organized as follows: In Section 2,
we describe on AES algorithm and the three encryption
modes. We present the system architecture in Section 3.
Section 4 describes the simulation results and FPGA
prototyping for the functional verification. The conclusion
on AES encryption core and future work are presented in the
Section 5.

II. AES ENCRYPTION

 AES block cipher core is SPN (Substitution Permutation

Network) architecture. Substitution Permutation is the
changed architecture that does not divide blocks
concurrently. Substitution is a process, which converts the
plaintext into the look-up table (LUT). The converted value
is called 'state'. Permutation is operation, which multiplies
state and fixed matrix. These feature enables the parallel
design of the AES core for the performance efficiency.

Figure 1 shows the AES algorithm system flow. AES
algorithm consists of three steps: Initial Round, Round, and
Final Round. Each part has four or less steps,
AddRoundKey, SubBytes, ShiftRows, and MixedColumns.
In the Initial Round, AddRoundKey step is processed. The

a. Corresponding author; seung.lee@seoultech.ac.kr

Copyright ©2017 IDEC All rights reserved.
This is an Open-Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)
which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Design of a 128-bit AES Block Cipher Core

Jung Hwan Oh, Sang Muk Lee, Young Hyun Yoon, and Seung-Eun Leea

 Department of Electronic Engineering, Seoul National University of Science and Technology
E-mail : ohjunghwan@seoultech.ac.kr

Fig. 1. AES algorithm system flow

IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

AddRoundKey features the bitwise exclusive-OR (XOR) of
each plaintext blocks with the key value. The result of the
previous step (Round part) is repeated in SubBytes,
ShiftRows, MixedColumns, and AddRoundKey process, 9
times or 11 times. In the SubBytes step, input block value is
replaced into the LUT value (S-Box). The upper 4 bits are
used to row index of S-Box and the lower 4 bits are used to
column index of S-Box. Therefore, we find and change each
value from the S-Box. In the ShiftRows step, the value is
rotated by the order of the column. For example, the zero
order of column is rotated 0 time (do not rotate), the first
order of column is rotated 1 time, the second order of
column is rotated 2 times and the third is 3 times, i.e., if the
first order of column is (01, 23, 45, 67), it is switched into
(23, 45, 67, 01) in the ShiftRows step. The MixedColumns
step has the complex product calculation and replacement
process while each column working seperately. In the Final
Round, the three steps except the MixedColumns are
repeated one time.

AES encryption modes is generally classified into
feedback and non-feedback modes. In the feedback mode,
the encryption of the next block must be implemented after
the previous block encryption is completed. In contrast, each
block of data can be encrypted respectively in non-feedback
modes. We consider one feedback mode and two
non-feedback modes as the AES operation modes. The
detailed descriptions on operation modes are as follows.

A. ECB Mode

ECB mode is the simplest block cipher mode. Figure 2
shows the ECB encryption process. The plaintext is divided
into blocks, and each block is encrypted using block cipher
encryption. Then, encrypted blocks are combined into the
complete ciphertext. Since there is no dependency on the

previous encryption result, the ECB mode can be processed
simultaneously in multiple cores. In the ECB mode, the
encryption of same data blocks always achieves the same
encrypted results. Inversely, when decrypting in the ECB
mode, it undergoes similar process as encrypting process.
Separating ciphertext into blocks, decrypting each block and
Combining block are the procedure of decryption.

B. CBC Mode

CBC mode has the highest security among the operating
modes of AES. This encryption process features the bitwise
XOR of the plaintext blocks with previous ciphertext
calculated in the previous encryption. When the first block
of the plaintext is entered, initialization vector (IV) is
required for encrypting in the CBC mode. An IV is
generated newly whenever the encryption operation is
executed. The first input block is formed by an XOR
between the first block of the plaintext and the IV. After the
first encryption, a first ciphertext comes out and is using for
the XOR operation with the second block of plaintext.
Similarly, from now on, the results of each XOR operating
between the previous ciphertext and the next plaintext block
make the encrypted ciphertext by passing through Block
Cipher Encryption. As this mode asks the previous
ciphertext for the next encryption, it is difficult to implement
in parallel processing. On the other hand, decrypting in the
CBC mode can process in parallel. It doesn’t need the
previous result for next decrypting, because the next
decrypted plaintext is resulted by XOR operation between
the previous ciphertext and the resulted block from Block
Cipher Decryption.

C. CTR Mode

CTR mode exploits the AES block cipher into a stream
cipher [12]. CTR mode uses the encrypted counter value and
avoids the data dependency of the CBC mode [13].
Whenever a block cipher encryption is performed, the
counter value (starting from zero) is increased by one, and
the counter value is encrypted. So, the ciphertext is obtained
as a bitwise XOR between each plaintext block and the
encrypted counter value. Because there is no dependency of
each encryption processing, it can be computed in parallel
simultaneously, in several cores along with the ECB mode.
Also, partial encryption is available in this mode, since each
block has been indexing. Likewise, decryption could be

Fig. 2. ECB mode encryption

Fig. 3. CBC mode encryption

Fig. 4. CTR mode encryption

IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

done similarly by the series of encrypting process in the
ECB mode.

III. SYSTEM ARCHITECTURE

The AES core, based on the open core crypto processor

[14], is used as the computing unit of the block cipher
processor. Figure 5 shows our AES core architecture
supporting three operation modes. The AES core consists of
the inout controller, AES controller and universal
asynchronous receiver and transmitter (UART) module. The
AES core executes a part of block cipher functions on the
hardware scheduler platform. Our AES core exploits 128-bit
encryption, we also designed the interface controller in order
to use the inout pads due to the lack of chip level pins.

A. Inout controller

The inout controller is exploited to fulfill the 128-bit
plaintext, key, IV input requirements by controlling with
3-bit input. The inout controller controls 168 inout pads. In
addition, the inout controller is able to start the AES
encryption with previous inputs. Table I shows the inout
controller operation with following input.

TABLE I.

Inout controller operation

Port value Direction Description
000 Input IDLE
001 Input Lower data
010 Input Upper data
011 Input Key
100 Input IV
101 Output Ciphertext
110 Input Encrypt with previous input
111 Output UART mode

First, input ‘001’ and ‘010’ is used to set the plaintext,

operation mode, and counter pointer. The ‘011’ and ‘100’ is
the input value to set the key and IV, respectively. When the
encryption is finished, the port value is set as ‘101’ to notify
the ciphertext and encrypted data is achieved with the flag
signal. The encryption is restarted with the previous
plaintext and operation mode with input ‘110’. With input
‘111’ the encrypted data is transmitted through the UART
module to verify the encrypted results.

B. AES controller
The AES controller consists of the buffer and AES-128

module. The FIFO buffer receives the plaintext, encryption
mode, key and IV from inout controller. The AES-128
implement the Rjindael algorithm, which is described in
Section 2 and includes the S-Box as a LUT for the
encryption.

We implement three operation mode (ECB, CBC, CTR)
to support feedback and non-feedback through multiplexors
and bitwise XOR. When the AES core operates in the CBC
mode, the input multiplexor selects one of input signals that
bitwise XORs between plaintext and IV. In the CTR mode,
the output multiplexor selects one of results, which is
bitwise XORs between plaintext and ciphertext.

C. UART module

The UART module receives the ciphertext from the AES
controller after every encryption is finished. The UART
module buffers the ciphertext in the buffer. When the inout
controller controls the UART module to transmit the
ciphertext using the UART module, the UART module
transmits the encrypted data for checking the ciphertext.

(a)

(b)

Fig. 8. CBC Mode (a) simulation result (b) FPGA emulation result

(a)

(b)

Fig. 7. ECB Mode (a) simulation result (b) FPGA emulation result

Fig. 5. AES encryption core architecture

Fig. 6. AES controller architecture

IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

IV. IMPLEMENTATION

We verify the operations of AES core by comparing with

software encryption results, simulation results and FPGA
emulations. Figure 7 shows ECB mode encryption
simulation and emulation results. We set the input and key
data. When we start the encryption, we verify the result in
simulation after 24 cycles. We check the emulation result
using on FPGA. Figure 8 shows CBC mode encryption
simulation results. This encryption process features the
bitwise XOR of the plaintext blocks with previous
ciphertext calculated in the previous encryption. We set the
input, key and initial vector data. We verified the correctly
results using the simulation and emulation. Figure 9 shows
CTR mode encryption simulation results. CTR mode is
combined ECB and CBC mode. To simulate the CTR mode,

we set the input, key, and counter data.
The AES core was fabricated by using Magnachip/Hynix

0.18 µm CMOS technology. Core size is 3.5×3.5mm2 and
operation frequency is 50 MHz with 3.3 V supply voltage as
shown in Table II.

TABLE II.

Characteristics of the AES core

For the verification of AES encryption core, we designed

the prototype board. The prototype board includes AES core
chip, an UART module and general purpose I/O (GPIOs).
We also exploit an FPGA in order to set key, IV and
plaintext and verify the encrypted ciphertext. After finishing
the encryption, the AES core transmits the ciphertext
through UART communication. Furthermore, the encrypted
data is compared with software-based AES encrypted
results. With these procedures, we conducted the verification
of the AES core. Figure 10 illustrates the prototype board of
the AES core for verification. As a result, Fig. 11 shows the

encryption result of the AES core. We compared with
software encrypted results with same key, IV and plaintext.
We successfully demonstrated the feasibility of our AES
core.

V. CONCLUSIONS

In this paper, we presented the AES core with three

operating modes. Research environment is implemented by
fabricating the AES core, which is integrated into ASIC, and
producing the prototype board including the external
memory. The performance analysis of the AES core is
conducted by comparing the software-based AES encryption
motion, along with making progress of parallel processing
and scheduling of hardware.

The AES core, which is designed, can be operated into
three operation modes. Using the AES core which is
integrated into ASIC, process three different types of
encryption, and store the encrypted result into the external
memory. If the system needs the decryption process to use
encrypted data, the process can be decrypted by the software
method. The AES core with three operations mode can
enhance the security of the system by protecting the data
effectively, and improve the performance by designing in
hardware. We expect that the encryption core for data
security will take an important role in IoT devices. For the
future work, we plan to design the AES decryption core and
merge with existing AES encryption core to build
full-encryption and decryption system.

Fig. 11. A verification result of AES core

Fig. 9. CTR Mode Encryption Simulation Result

Fig. 10. A prototype board for verification

IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

ACKNOWLEDGMENT

This work was supported by the IDEC (IC Design

Education Center). This work was also supported by a grant
from the IT R&D program of MOTIE/KEIT [10076314,
Development of lightweight SW-SoC solution for
respiratory medical device]

REFERENCES

[1] R. Jinnai, A. Inomata, I. Arai and K. Fujikawa,

"Proposal of hardware device model for IoT endpoint
security and its implementation," 2017 IEEE
International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops),
Kona, HI, 2017, pp. 91-93.

[2] N. S. S. Srinivas and M. Akramuddin, "FPGA based
hardware implementation of AES Rijndael algorithm
for Encryption and Decryption," 2016 International
Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), Chennai, 2016,
pp. 1769-1776.

[3] H. Kuo, I. Verbauwhede and P. Schaumont, "A 2.29
Gbits/sec, 56 mW non-pipelined Rijndael AES
encryption IC in a 1.8 V, 0.18 μm CMOS technology,"
Proceedings of the IEEE 2002 Custom Integrated
Circuits Conference, 2002, pp. 147-150.

[4] P. U. Deshpande and S. A. Bhosale, "AES encryption
engines of many core processor arrays on FPGA by
using parallel, pipeline and sequential technique," 2015
International Conference on Energy Systems and
Applications, Pune, 2015, pp. 75-80.

[5] Data encryption standard (DES). Technical Report
Federal Information Processing Standard (FIPS) 46,
National Bureau of Standards, 1977.

[6] Triple data encryption algorithm (TDEA, a.k.a. “Triple
DES”). Technical Report Federal Information
Processing Standard Publication 46-3, the standard
ANSI X9.52-1998. NIST, 1998.

[7] Advanced encryption standard (AES). Technical Report
Federal Information Processing Standard Publication
(FIPS PUBS) 197, [Online] Available:
http://csrc.nist.gov/CryptoTollkit/aes/rijndael, 2000.

[8] SEED. National Industrial Association Standard (TTAS
KO-12.0004, 1999), KISA, 1998

[9] S. Mewada, P. Sharma and S. S. Gautam, "Exploration
of efficient symmetric AES algorithm," 2016
Symposium on Colossal Data Analysis and Networking
(CDAN), Indore, 2016, pp. 1-5.

[10] Pritamkumar N. Khose, Prof. Vrushali G. Raut,
"Implementation of AES Algorithm on FPGA for Low
Area Consumption",2015 International Conference on
Pervasive Computing (JCPC).

[11] S. M. Lee, E. N. R. Ko and S. E. Lee, "A Hardware
Scheduler for Multicore Block Cipher Processor," 2016
24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP),
Heraklion, 2016, pp. 750-754.

[12] D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic
and S. Parameswaran, "Advanced modes in AES: Are

they safe from power analysis based side channel
attacks?," 2014 IEEE 32nd International Conference
on Computer Design (ICCD), Seoul, 2014, pp.
173-180.

[13] S. Y. Lin and C. T. Huang, "A High-Throughput
Low-Power AES Cipher for Network Applications,"
2007 Asia and South Pacific Design Automation
Conference, Yokohama, 2007, pp. 595-600.

[14] Open cores, Crypto core. [Online]. Available:
http://opencores.org/project,tiny_aes

Jung-Hwan Oh received the B.S.
degree in the Department of
Electronic Engineering at the Seoul
National University of Science and
Technology, Seoul, Korea, in 2017.
He is M.S. student in the Department
of Electronic Engineering at the
Seoul National University of Science
and Technology, Seoul, Korea. His
research interests include computer

architecture, System-on-Chip Design and hardware
multi-core scheduler design.

Sang-Muk Lee received the M.S

degree in the Department of
Electronic Engineering at the Seoul
National University of Science and
Technology, Seoul, Korea, in 2017.
received the B.S. degree in
Electronic Engineering from the
Seoul National University of
Science and Technology, Seoul,
Korea, in 2014. He is M.S. student.
His research interests include

computer architecture, System-on-Chip, and hardware
multi-core scheduler design.

Young-Hyun Yoon is B.S.

student in the Department of
Electronic Engineering at the Seoul
National University of Science and
Technology, Seoul, Korea. His
research interests include computer
architecture and hardware design.

IDEC Journal of Integrated Circuits and Systems, VOL 3, No.4, Oct. 2017 http://www.idec.or.kr

Seung-Eun Lee received the
Ph.D. degree in electrical and
computer engineering from the
University of California, Irvine (UC
Irvine) in 2008 and the B.S. and M.S.
degrees in electrical engineering
from the Korea Advanced Institute of
Science and Technology (KAIST),
Daejeon in 1998 and 2000,
respectively. After graduating, he had

been with Intel Labs., Hillsboro, OR, where he worked as
Platform Architect. In 2010, he joined the faculty of the
Seoul National University of Science and Technology,
Seoul. His current research interests include computer
architecture, multi-processor system-on-chip, low-power
and resilient VLSI, and hardware acceleration for emerging
applications.

